
SCiFI – A System for Secure Face Identification

Margarita Osadchy
University of Haifa

Benny Pinkas
University of Haifa

Ayman Jarrous
University of Haifa

Boaz Moskovich
University of Haifa

Abstract—We introduce SCiFI, a system for Secure Com-
putation of Face Identification. The system performs face
identification which compares faces of subjects with a database
of registered faces. The identification is done in a secure
way which protects both the privacy of the subjects and the
confidentiality of the database. A specific application of SCiFI
is reducing the privacy impact of camera based surveillance.
In that scenario, SCiFI would be used in a setting which
contains a server which has a set of faces of suspects, and
client machines which might be cameras acquiring images in
public places. The system runs a secure computation of a face
recognition algorithm, which identifies if an image acquired by
a client matches one of the suspects, but otherwise reveals no
information to neither of the parties.

Our work includes multiple contributions in different areas:
• A new face identification algorithm which is unique in

having been specifically designed for usage in secure
computation. Nonetheless, the algorithm has face recog-
nition performance comparable to that of state of the art
algorithms. We ran experiments which show the algorithm
to be robust to different viewing conditions, such as
illumination, occlusions, and changes in appearance (like
wearing glasses).

• A secure protocol for computing the new face recognition
algorithm. In addition, since our goal is to run an actual
system, considerable effort was made to optimize the
protocol and minimize its online latency.

• A system – SCiFI, which implements a secure computation
of the face identification protocol.

• Experiments which show that the entire system can run in
near real-time: The secure computation protocol performs
a preprocessing of all public-key cryptographic opera-
tions. Its online performance therefore mainly depends
on the speed of data communication, and our experiments
show it to be extremely efficient.

Keywords-Secure computation, face recognition, privacy.

I. INTRODUCTION

Video and camera based surveillance is very common,
and is found to be useful for fighting crime. On the other
hand, the ubiquity of such surveillance is a major concern
for the public, that feels that its privacy is being violated.
Our work focuses on face recognition systems, which can
automatically identify if some known suspects appear in
a large set of images. Such systems can be useful, for
example, for automatically searching for suspects in a stream
of images coming from public places. On the other hand,

The first author was partially funded by the Israel Science Foundation
(grant No. 608/06). The second author was partially funded by the ERC
project SFEROT and by the Israel Science Foundation (grant No. 860/06).

these systems can be misused to track people regardless
of suspicion, and a rogue operator can even combine data
from these systems with a universal database linking faces
to identities, such as a database of drivers’ license photos.

A simple solution to the privacy concern might be to
provide each camera with the list of images of suspects,
perform the identification task locally at the camera, and
report to the operator only in the rare cases where a match
is found. This solution might not be acceptable, though, if
the list of suspects is confidential, as is often the case. There
is therefore a need for a solution which protects both the
privacy of the public and the confidentiality of the data held
by authorities.

We developed the SCiFI system which matches images
taken by a client camera to a list of images (of potential
suspects) which are held by a server. Face identification
in SCiFI is based on a novel face recognition algorithm
that performs very well in terms of applicability to real-
life images and robustness to unseen conditions (e.g., dif-
ferent illumination conditions). The matching is done in a
privacy preserving way, using efficient methods of secure
computation, and does not reveal any information to the
parties, except for whether a match was found. Furthermore,
to further protect the database of suspects it is possible
to distribute the operation of the server to run on several
machines, such that each of these machines knows only part
of each suspect’s face. (The details of a system utilizing
this distributed approach are given in the full version of the
paper.)

System overview: SCiFI is composed of two major
components, a server, which stores a set of face represen-
tations of subjects from a confidential list, and a client,
whose input is a single face. In a typical setting the server
might have a list of faces of suspected persons, while the
client might be a camera which takes photos of passersby.1

The system must find out if the face held by the client
matches any of the faces in the server’s list. The system
must also satisfy two other requirements: (1) As with any
biometric data, it is unlikely that there will be an exact match
between the image acquired by the client and the image of
the same person that exists in the list. Therefore a fuzzy face

1We assume that the recognition module of the client receives images
of faces preprocessed for face recognition. We do not discuss in this paper
methods for face detection or localization that perform this preprocessing.
See, e.g., [1], [2] for related work.

identification algorithm must be used. (2) The matching must
be done in a privacy preserving manner. Namely, the server
and client must not learn any information except for whether
there is a match between the client’s input and a face in the
server’s list.

Achieving this goal required designing a new face recog-
nition algorithm which has very good performance in terms
of the robustness of recognition, and can also support secure
computation protocols. (The main challenge in this respect
is that face recognition algorithms typically use data repre-
sentations over the Real numbers, whereas secure protocols
operate over finite fields, and a simple conversion of existing
face recognition methods to finite fields results in degra-
dation of recognition.) We also designed secure protocols,
based on homomorphic encryption and oblivious transfer,
computing the face recognition algorithm. We conducted
experiments showing the accuracy of the face recognition
algorithm and the nearly real-time performance of the secure
protocols.

Face Recognition and Privacy: Face recognition is an
inexpensive and non-intrusive technique, and its usage for
user verification is more convenient than using passwords,
hardware devices, or other biometric identification methods.
Thus previous research in incorporating face technology
with security focused on the verification task [3], where the
user identifies himself to the system and the system verifies
his identity by comparing the current image of his face
with a representation of his face stored in the system. Such
applications assume a controlled environment, rely on user’s
cooperation, and usually use several images of a person
under controlled conditions in the registration phase.

We address a different recognition task, denoted in the
face recognition literature as identification. This is a one-
to-many recognition task where a single image is compared
with a list of stored images. This task is more useful in
surveillance applications, like the detection of criminals or
terrorists in public places, or a search for a missing person.
It has several distinguishing characteristics which make it
much harder to implement than the verification task:
• The registration of persons into the system is based

on very few images of them (usually a single image
per person) which might have been taken without
the person’s cooperation, under arbitrary conditions of
illumination and pose, and might be of poor quality.

• The recognition routine is also different: Given a novel
image of a face under arbitrary, and not necessarily
ideal, viewing conditions, the system must recognize if
this is an image of one of the individuals stored in the
system or otherwise reject it.

In addition, unlike the one-to-one verification task, the one-
to-many identification task, which is done without the sub-
ject’s cooperation, must be robust to different changes that
are likely to occur between the original picture stored in the
database, and the image taken by the client camera. These

Figure 1: Examples of variation in test images : top row
– illumination direction and glasses on/off, bottom row –
three subjects with variation in pose, lighting, and facial
expression

can include, for example, changes in illumination, i.e. in
the amount and direction of light; changes in the viewpoint
of the camera, and in the pose of the subject; different
occlusions which hide parts of the subject’s face; difference
in facial expressions; and changes in local appearance due
to facial hair, makeup, glasses, etc., which might be used by
the suspect to avoid being identified.

Figure 1 describes some examples of variation in test
images. These images are taken from the FERET [4] and
PIE [5] databases of images that we use in order to test the
recognition performance of SCiFI.

Face recognition algorithms and identification: As with
any biometric data, two images of the same person are
never identical. On the other hand, authentication based
on passwords or cryptographic keys always expects the
user to enter the same password or use the same key.
Representations used in recognition must be designed to
produce the same results for similar, but not necessarily
identical, inputs. In cryptographic algorithms only identical
inputs enable successful authentication, and therefore they
cannot be applied to biometric recognition. (To bridge this
gap, there have been attempts in cryptography to develop
noise resistant one-way hash functions [6], [7], [8]. These
are discussed in Section I-A.)

The novel algorithm that we use in SCiFI performs well
in the one-to-many identification task since it can generalize
to unseen conditions. There are other face recognition algo-
rithms which are robust to changes in the environment in
which photos are taken. The algorithm of SCiFI is unique,
however, in that it lends itself easily to secure computa-
tion, which is inherently based on the usage of discrete
mathematics. Other effective face recognition algorithms
employ continuous face representations which are compared
by complex measures of similarity that in some cases are not
even metric. Such representations are not easily supported
by cryptographic algorithms. A naive conversion from the
continuous comparison methods used in face recognition to a
discrete measure, using, e.g., simple quantization, affects the
accuracy of recognition, and result in degraded performance.

This issue is elaborated in more detail in Section I-A.
An overview of the face representation used in SCiFI:

We propose and use an index-based face representation that
was specifically designed for usage with secure computation.
The representation is based on only a single known image
per person. It is robust to illumination changes, occlusions,
shadows, highlights, and local changes in appearance (such
as wearing glasses). We do not address pose in this paper,
but in principle the face representation can be extended to
variation in pose.

The representation is based on the idea of facial composite
(aka photo-robot), where a face is formed as a collection
of fragments taken from vocabularies of facial features. (A
similar system is typically used by police departments to
record eyewitness’s memory of a face.) The vocabularies
of facial features contain typical appearances of facial frag-
ments obtained from a set of people unrelated to the face
that should be reconstructed. (To exemplify and simplify the
system, assume that the vocabulary contains a set of typical
images for each facial component, such as the nose, eyes,
eyebrows, etc.) Choosing the best match for each part and
placing those parts in the spatial configuration similar to
the sought face is likely to produce an output close to the
original face. The reconstruction process is very fast, and
although the result will not be photo-realistic, it can still
suffice for recognition.

In SCiFI we use more parts than are commonly used
by humans, and they do not necessarily correspond to the
semantic parts of a face. We propose to represent a face
by a vector which is composed of (1) indices into part
vocabularies, and of (2) quantized relative distances of the
parts to the center of the face. We assign to each part a
set of words from the corresponding vocabulary, instead of
a single match. (E.g., the nose might be represented by the
indices of the four noses from the vocabulary which are most
similar to it. Such flexibility in the representation makes
it robust to image conditions and local noises.) Any two
representations are essentially sets that can be compared by
a secure computation of their set difference.

The face recognition part is very fast, it does not require
dense correspondence between the input and database faces
(but rather only 3-5 points for initial alignment of faces),
and it does not use 3D models or any extensive training.
The secure computation of this algorithm has a relatively
small overhead, which means that it can be deployed in real
systems.

Our contributions: The SCiFI system is the first secure
face identification system that is suited for real-life applica-
tions. The advantages of SCiFI over existing identification
methods can be summarized as follows:
• As is demonstrated by our experiments, the SCiFI sys-

tem uses a face identification algorithm which provides
results that are comparable to the state-of-the-art in
illumination invariant face recognition, and achieves

very good robustness to occlusions. The algorithm can
be based on computing the Hamming distance, and is
therefore a natural candidate for secure computation.
The results are superior to those of the Eigenfaces
algorithm which, to our knowledge, is the only other
face recognition algorithm for which secure computa-
tion was applied.

• SCiFI uses efficient secure computation techniques to
identify, without leaking any other information, whether
a given image is in a suspects list.

• We implemented the complete SCiFI system. This
implementation computes the face representation at the
client and then runs a secure computation with the
server. We ran experiments of both the accuracy of
face identification, and of the performance timings of
the entire system (including communication between
the parties). Even though we implemented the cryp-
tographic part in Java, its performance is remarkably
fast, thanks in part for optimizations which perform
a precomputation of computation intensive tasks, and
enable near real-time identification of suspects.

Another attractive property of SCiFI is that face identifi-
cation is done through an interactive protocol which reveals
to the client an upper bound on the number of items in the
server’s database, and therefore the client can be assured
that the server does not use the system for large scale image
identification (e.g., for comparing the client’s input with
images of all people who have a criminal record). Another
advantage is that the server cannot store the client’s input
for future use. This prevents the server from, say, comparing
those who pass by the client’s camera today to suspects
whose faces will become known in the future.

A. Related Work in Face Recognition

Different aspects of face recognition have been addressed
in numerous papers. Here we focus on the robustness of the
representation, and on protection of the biometric data.

Robust Face Representations: An ideal face represen-
tation should be robust to illumination changes, occlusions,
and other variations of the image. In particular, illumination
variations are known to greatly influence the appearance
of human faces. Adini et al. [9] have shown that images
of different faces under similar illumination vary less than
the same face under different illumination. This is a great
obstacle to any face identification system that must work in
real-life conditions.

Most existing systems for robust face cognition use Real-
valued representations of faces, and therefore cannot be
used as is in secure computation. Straightforward attempts
to quantize the values of the representations result in poor
recognition results. A previous design of a privacy preserv-
ing face identification system was based on the Eigenfaces
algorithm (see discussion in Section I-B). The Eigenfaces

algorithm is a well known basic face recognition algo-
rithm [10]. However, its recognition performance is poor
if the training and suspect images were taken in different
conditions (see our experiments in Section VI).

Protection of Biometric Data: It is known that different
readings of the same biometric data of the same person are
usually similar, but not necessarily identical. Therefore the
biometric representations used in recognition are designed
to produce the same results for similar inputs. An easy
way to do that is to store a copy of the original biometric
data and compare it to the reading of the user’s data. This,
however, enables attackers to steal this data. A more secure
approach would be to store a one-way hash of the biometric
data, as is used with password based authentication. In the
case of biometric data this approach requires the usage of
noise resistant one-way hash functions, referred to as fuzzy
hashing (or fuzzy commitments), or as secure sketches. Such
functions were described in [6], [7], [8].

Recent attempts in integrating these schemes in face
recognition [3] focus on the simpler, one-to-one, verification
task. These methods are limited to controlled environments,
and use a large number of images of the subject for
registration. In SCiFI the biometric data is stored at the
server, which is assumed to be much more secure than users’
machines, and therefore we do not use these methods to
protect it.

Another approach for securing biometric data uses revo-
cable biometrics, see e.g. [11], [12]. It involves transforming
the biometric data using a one-way hash function such that
it is impossible to restore the original data from the result.
Different persons use different transformation functions and
therefore their images cannot be compared. If the stored
data is compromised, the person can simply re-enroll using
another transformation function.

Computer vision and privacy research: Recent work on
“blind vision” [13] investigates a setting which is different
than ours. In that setting one party wishes to detect faces in
a collection of sensitive images it owns, and the other party
has a confidential face detection algorithm. The work shows
how to use cryptographic secure computation to privately
perform the recognition task.

There has also been a series of results on obscuring private
information in digital surveillance videos [14], [15], [16],
[17], [18]. The setting is one where the persons watching
the surveillance videos can detect suspected behavior with-
out being able to examine the faces of the subjects. The
challenge is to identify the private information and obscure
it in real-time, while being able to recover it if needed.

B. Related Work on Secure computation

The problem we discuss is that of secure computation
(or Secure Function Evaluation – SFE). It involves several
parties with private inputs that wish to compute a function
of their joint inputs, without revealing to an adversarial party

(or a coalition of such parties) any information that cannot
be computed using the input of the adversary and the output
of the function.

There exist well known solutions for secure computation
of any function (see e.g. [19] for the two party case,
or [20] for a detailed discussion of the subject). The general
method employed by most of these solutions is to construct
a binary circuit that computes the required function, and
run a distributed protocol that securely evaluates the circuit
gate by gate. The communication overhead of these generic
protocols is linear in the size of the circuit, and the com-
putation involves an oblivious transfer for each input bit. It
seems hard to apply these methods to compute continuous
functions or represent Real numbers, since the methods
inherently work over finite fields.

Secure computation of Eigenfaces: Secure computation
of a face recognition algorithm was previously applied to the
Eigenfaces algorithm. A secure protocol for computing this
algorithm was presented in [21], and a considerable improve-
ment in efficiency was shown in [22]. The secure protocol in
that work computes a quantized version of Eigenfaces. The
quantization did not affect the recognition performance so
much, but as we show in Section VI, the original Eigenfaces
algorithm is not very good in recognizing images taken in
unseen conditions.

The Eigenfaces algorithm is based on computing the
Euclidean distance, whose secure computation is more com-
plicated than that of the Hamming distance. It was unknown
before our work, how to translate the face recognition
problem to a computation of the Hamming distance, which
lends itself more efficiently to secure computation.

To exemplify the efficiency of SCiFI, we note that the
secure computation of Eigenfaces must send a homomorphic
encryption of every pixel of the image. The experiments
conducted in [21], [22] use images of 92 × 112 = 10304
pixels. (It is hard to imagine that smaller images could be
used for meaningful recognition.) This image size translates
to more than 10, 000 homomorphic encryptions, and any
increase in the image size (which is needed in order to
improve the quality of recognition) will result in an increase
in this number. In SCiFI, on the other hand, a face is always
represented by a vector of 900 bits, independently of the size
of the image. The system sends a homomorphic encryption
per each of these 900 bits. Moreover, this communication
can be done in a preprocessing phase, while the online
communication requires sending only a single 900 bit rep-
resentation of the face.

The papers discussing secure computation of Eigenfaces
provide timing results for the implementation of the secure
computation part alone (as well as an analysis of the
number of bytes that must be communicated). We report
on experiments which time also the communication layer,
including socket opening, etc.

II. SYSTEM ARCHITECTURE

The SCiFI system is composed of a server and a client.
The operation of the system can be separated into an offline
(or preprocessing) part, and an online part.

The structure of the SCiFI system is described in Table I.
The offline part prepares the face recognition database, by
computing representations of the faces that are in the server’s
list. This stage is also used to execute some initializations
and preprocessing of the cryptographic algorithms.

The online part is executed after the client obtains an
image. This part decides whether the image is of a person
who appears in the list, and can be separated into two distinct
stages. In the first stage the client prepares a representation
of the face that it acquired. In the second stage the two
parties execute a cryptographic algorithm which compares
the client’s representation with those in the server’s list, and
decides whether there is a match between them (without
revealing any other information).

server client
offline prepare representations

of faces in server’s list
initialize cryptographic algorithms

online - acquire face
- generate representation
s of the acquired face

run a secure protocol, checking if
there is a match between s and list

Table I: The operation of the system.

This modular structure of the system enables us to sepa-
rate the description of the system into a description of the
face recognition part, in Section III, and a description of the
cryptographic parties, in Section IV.

III. THE FACE RECOGNITION ALGORITHM

We assume that facial features have a number of typical
appearances and almost every face can be generated by
combining such components. Let X denote a set of people
enrolled in the recognition system. Assume that we have a
(possibly public) database Y of faces unrelated to X . While
this database is public, we want to protect the data in X . We
divide a face into p parts and build vocabularies of typical
appearances (that we call words) per part using Y . Let
V = {V1, . . . , Vp} denote the part vocabularies (where, for
example, in a simplified way, V1 might include 20 options
for the nose, V2 includes 20 options for the mouth, etc.).

Let I be an image of a person from X . We represent
I as a vector of indices, denoted s, of words from the
part vocabularies which are most similar to the parts in I .
Our goal is to produce almost identical vectors of indices
from different images of the same person. Different face
representation vectors can now be compared by computing
their set difference (the set difference of two sets A and B
is defined as the difference between the size of their union

and the size of their intersection; if A = B then their set
difference is 0).

Previous research shows that locations of facial features
in a face have good discriminative power. Thus our rep-
resentation takes these locations into account as well, and
includes quantized distances from each part of the face to the
center of the face. (An exact description of the representation
appears in Section III-C.)

The proposed representation has a number of advantages:
(1) The model is tailored for computing the set difference
and the Hamming distance, which are discrete metrics that
can be used in secure computation. (2) The vocabularies
of parts are constructed from a set Y of people unrelated
to the set X of enrolled people, and therefore there is no
need to store the original data of the persons enrolled in
the system. (3) The representation also makes it possible to
use only a single image per person for recognition, which
is an important feature for practical systems (where, say,
only a single photo of a suspect is available). (4) The
vocabularies are constructed from Y , and therefore they
stay fixed whether X changes or not, and thus no retraining
is needed when a new subject is added to the system. (5)
The proposed model is more flexible than the existing part-
based face representations, because each part in our model is
represented by an unordered set of appearances. The use of
set difference for comparison allows for partial similarity
between the representations of the same individual. This
contributes to the robustness against occlusions, shadows,
highlights, and other local changes in appearance. (6) The
proposed representation uses facial components which are
small patches, which allows to assume their planarity and
use illumination insensitive local descriptor of patches (e.g.,
SIFT [23]) in order to cope with varying illumination. To
summarize, the proposed representation is very robust to
environmental changes and is designed to be incorporated
with privacy preserving mechanisms. These features make
it an excellent choice for security applications.

Section organization: The following sections describe in
detail the construction of face representations. Readers who
are only interested in the security applications can jump to
Section III-C which describes the representation which is
used by the secure computation.

A. Preprocessing

Definition of Parts: We define a regular grid, corre-
sponding to the centers of the parts, over facial area with
higher variance, namely eyes, eyebrows, nose and mouth.
Patch sizes were chosen to be relatively small (20% of face
width) in order to have many patches with minimum overlap.

Part Vocabularies: The construction of part vocabu-
laries consists of three steps: (1) Normalization of images
of subjects in Y to a canonical size. (2) Extracting patches
from images of subjects in Y . Prior to extraction, patches
are localized, by searching a corresponding template from

an average face in images from Y . (3) Selection of words for
part vocabularies. In this step, patches corresponding to the
same part are clustered and only a single patch per cluster
is chosen to be a word in the part vocabulary. This aims to
remove similar words from the vocabularies.

At the end of the process p vocabularies of parts are
formed, one for every face part. Each vocabulary containing
N words, which are given unique indices in the range
[0, N − 1] to be used in the face representation.

Distance Vocabularies: The spatial information is mod-
elled by the distance from the center of a part to the center
of the face. During the preprocessing stage, we estimate the
distance distributions of the parts and quantize them into
a number of bins. Each bin is given a unique index. The
estimation is done on the subjects from the public set Y .

B. Input to the system

We assume that the input to the system is an image of
a face in which the the positions of the eyes and mouth
are known. The positions of the eyes and mouth can be
marked manually by an operator of the client’s module or
determined using automatic methods for detection of facial
features [24], [25]. These positions are used for alignment
purposes.

C. Face Representation

The representation of a face has the following form. We
denote by N the number of words in each part vocabulary,
and by p the number of parts in the face representation. A
full face representation is in the format s = (sa, ss) and
contains the following components:
• Appearance component: sa is the appearance compo-

nent and is composed of p sets sa
1 , . . . , sa

p, one set per
facial part, where each set contains the indices of n
out of N words of the part vocabulary. To select a
set sa

i for the part i we define a window centered at
the corresponding grid point in the input image. Every
word from the part vocabulary is matched against the
defined window. The indices of the n words that have
the most resemblance with the part i are selected for
the set sa

i .
• Spatial component: ss is the spatial component of the

representation. Since we want to use discrete values, the
representation uses quantized distances. The spatial part
is therefore composed of p sets ss

1, . . . , s
s
p, where each

set contains z indices of bins of quantized distance from
the center of the face (namely, the set ss

i is a quantized
representation of the distance of the ith part from the
center of the face). Denote the total number of these
bins by Q. The ith part of the input face is localized by
matching the same part from the average face against
the local window centered at the grid point.

Our experiments use p = 30 face patches, with a vocabu-
lary of N = 20 visual words and Q = 10 quantized distance

bins per patch. We empirically found that it is best to set the
number n of indices in each set sa

i to 4. The number z of
indices in each set ss

i is 2. This means that the appearance
component contains p = 30 sets, where each set contains
n = 4 words out of N = 20 options. The spatial component
contains p = 30 sets of z = 2 words out of Q = 10 options.

D. Recognition

The recognition task in SCiFI consists of deciding if a face
in the image acquired by the client matches one of the faces
in the database stored by the server. Two images are said to
match if the set difference between their two representations
is below some predefined threshold. To increase the accuracy
of recognition, the system learns, in a preprocessing stage, an
individual threshold for every person in the database. Then,
in the real time phase, the representation of the client’s face
is compared with every face representation in the database
and is said to match it if their set difference is smaller than
the corresponding threshold. If the client’s face passes one
of the individual thresholds it is identified as a match.

Learning individual thresholds: Learning individual
thresholds is a hard task because these thresholds depend
on variations in different images of the same face, while
we assume that SCiFI has only a single image of a suspect
for registration. The invariance of our face representation
to illumination changes and its robustness to occlusions
reduces the intra-user variance, but does not cancel it com-
pletely. There are two possible solutions to this problem.
One is based on the assumption that intra-user variation
is independent from the identity of the user, meaning that
the variance of the representation depends on the viewing
conditions and occlusions and not on the user himself.
Then we can learn this variation using a public database.
Such an assumption, however, is rather simplistic, since
some people tend to change their appearance more then
others (makeup, facial hair etc). An alternative solution is to
determine a threshold on the set difference for each person
that will discriminate him/her from an ensemble of people
which includes individuals registered in the system and can
also include other subjects unrelated to the system (which
should ideally represent typical inputs to the system). An
initial threshold for the ith user is set based on the smallest
set difference between him and the rest of the people in
the ensemble and is corrected according to the viewing
conditions in the image which can be determined in the
client’s module and sent to the server without revealing any
information about the face. We haven’t yet implemented the
correction part and used the initial thresholds in reported
experiments.

IV. THE CRYPTOGRAPHIC ALGORITHMS

This section describes the cryptographic algorithms used
for secure computation of face recognition, with an emphasis
on pushing as much as possible of the computation to a

preprocessing stage which can be performed before the client
obtains its inputs. This is done in order to optimize the
time it takes to securely compute a face recognition after
obtaining an image of a face.2

A. Cryptographic Tools

We only consider security against semi-honest adversaries
(also known as passive, or honest-but curious adversaries).
Namely, it is assumed that corrupt parties follow the protocol
but might try to learn additional information. For lack of
space we do not provide formal definitions of security in
this workbut rather refer the reader to [20] and note that
we follow the definitions in that book (for the semi-honest
case). Informally, we remark that security can be defined
by requiring that the entire view of each party during the
protocol can be simulated given only the input and output
of the party. Therefore the protocol execution itself does not
add any new information to the party.

A major tool that we use is an additively homomorphic
encryption. This is public-key encryption which enables,
given two encryptions E(m1), E(m2) and without knowl-
edge of the private key, to compute E(m1 + m2), or
compute E(c · m1) for any known constant c. We require
the encryption system to be semantically secure. Namely,
an adversary which does not know the private key and
which is given a message which is an encryption of one of
two plaintexts, where these plaintexts might even be chosen
by the adversary, cannot distinguish which one of them is
encrypted in the message. In particular, this implies that
the encryption scheme must be probabilistic and different
encryptions of the same plaintext will be different. We
specifically use the Paillier cryptosystem [26].

1-out-of-N Oblivious transfer, denoted OTN
1 is a two

party protocol, run between a sender with N inputs
X0, . . . , XN−1, and a receiver with an input i ∈ {0, . . . , N−
1}. The receiver learns Xi and nothing else, and the sender
learns no information. There are different variants of OT
and a rich research on this subject. OT is the basic tool
of secure computation, and it was shown how to base
secure computation on OT alone. It was shown in [27] how
to implement OTN

1 using log N invocations of OT2
1 and

N symmetric encryptions. OT2
1 can be implemented using

several public-key operations (i.e., exponentiations), using,
say, El Gamal encryption. We will also use the fact that
it is easy to preprocess the public-key operations: In the
preprocessing stage the server prepares N random pads and

2 An alternative approach to our protocols would have been to apply
Yao’s generic secure [19] two-party protocol to the recognition algorithm.
This would have required expressing the algorithm as a circuit which
computes and compares many Hamming distances, and then sending and
computing that circuit. The protocol would have had to perform 900
oblivious transfers, instead of 9 oblivious transfers per item in the server’s
database, as is described for the Fthreshold protocol below. We therefore
believe that the performance of our protocols is significantly better than
that of applying generic protocols.

the parties run a OTN
1 of these values, where the client’s

input is a random index i′. In the online stage, the client,
which wants to learn item i, sends the difference between
i and i′ to the server, which shifts the order of its pads
accordingly. The server then computes the exclusive-or of
each pad with the corresponding input X , and sends the
results to the client (who can decrypt only one of these
values). As a result, online computation consists only of
efficient exclusive-or operations. We will use this variant of
OT in our implementation.

B. Functionality

The cryptographic algorithm of SCiFI receives its input
from the face recognition part of the system. We define
the functionality of this algorithm in terms of its input and
output.

Input: The input of the client, as well as each entry
in the server’s list, contain a representation of face, in
the format defined in Section III-C. We will translate this
representation to an equivalent representation as a binary
vector, which will be more convenient for applying the
cryptographic algorithm. The new representation is defined
as follows:
• Every set sa

i is represented as a binary vector va
i of

length N = 20. Each bit of va
i corresponds to a

different index of an entry in the part vocabulary. The
vector va

i has exactly n = 4 bits set to 1, in the locations
of the n indices in the set sa

i .
• Every set ss

i is represented as a binary vector vs
i of

length Q = 10. Each bit of vs
i corresponds to a different

bin of quantized distances. The vector vs
i has exactly

two bits set to 1, in the locations of the indices in the
set ss

i .
• A face is represented as a vector v =

va
1 | · · · |va

p |vs
1| · · · |vs

p. The length of V is
p · (N + Q) = 30 · (20 + 10) = 900 bits.

It is important to note that the set difference between
the representations s, s′ of two faces, is exactly equal to
the Hamming distance of the vectors v, v′. The Hamming
distance of these 900 bit vectors can be at most p·2·(n+2) =
30 · 2 · 6 = 360, since each va

i component has only n = 4
bits set to 1, and every vs

i component has only 2 bits
set to 1. Furthermore, in our experiments we identified
that the maximum Hamming distance between two face
representations is even smaller. We denote the bound on the
value of the Hamming distance as dmax. In our experiments
we found it to be dmax = 180. We use this fact to further
optimize the cryptographic algorithm.

Output: The goal of the system is to identify a match
between the client’s input and an item in the database.
(Typically, it is expected that only a single match will be
found, since each entry corresponds to a different face.)
There are different options for identifying a match based
on the Hamming distance of the face representations. We

describe here two functions which can be used for this
purpose.
• Fthreshold. This functionality has an additional input, a

threshold ti, for each face in the server’s database. The
functionality computes the Hamming distance between
the representation of the client’s input and each of the
representations of the items in the server’s list. The
output is the index of the item (or items) in the server’s
list whose Hamming distance with the client’s input is
smaller than the corresponding threshold ti.

• Fmin+t. The output is the index of the item in the list
whose Hamming distance with the client’s input which
is minimal. However, if this distance is larger than the
threshold, i.e. if no database item is closer to the input
than the threshold, then no output is given.
Choosing the right functionality: The outputs of the

functionalities Fthreshold and Fmin+t only differ when the
basic algorithm finds the client’s image to be similar to
more than a single face in the server’s database. Ideally this
would not happen since a person should only be similar to
himself. Still, if the similarity thresholds ti are not accurately
calibrated then a single image might be considered by the
algorithm to be close to two or more database images (i.e.,
the set differences will be smaller than the corresponding
ti values). In that case the Fthreshold functionality outputs
the identities of all database items which are close to client’s
input, whereas Fmin+t only outputs the identity of the closest
item. While Fmin+t provides more privacy, one could argue
that it is more reasonable to use Fthreshold, since similarity
to any of the suspects must be investigated. We also note
that secure computation of Fmin+t is harder than that of
Fthreshold. For both of these reasons, we only implemented
the latter in the SCiFI system (although we discuss the
computation of both functionalities in this paper).

Learning the output: It is possible to let only the client,
only the server, or both parties, learn the output of the
computation. We will describe protocols for all these cases.

C. Cryptographic Protocols for Face Recognition

We start with a description of a protocol for secure
computation of the Fthreshold functionality, and then de-
scribe how to optimize the implementation of the protocol.
We then describe the Fmin+t protocol. Both protocols are
based on extensions of ideas used in [28]. As described
in Section IV-B, each face representation is of length ` =
p ·(N +Q) = 900 bits. The Hamming distance between two
representations is known to be at most dmax = 180.

The secure protocol computing Fthreshold, where only
the client learns an output, is described in Figure 2. In
the protocol the client and server first use homomorphic
encryption to count the number of locations in which their
two input words differ. The result is in the range [0, dmax].
None of the parties learns this value, but the client learns
the sum of the Hamming distance and of a random number

r chosen by the server. Next, the two parties use 1-out-
of-(dmax + 1) oblivious transfer to map the result to the
appropriate output value: The sender is the server, and it sets
the OT inputs to be X0, . . . , Xdmax+1 where Xj is equal to
1 if j + r mod (dmax + 1), is between 0 and the threshold
ti. The receiver is the client. Its input to the OT is the sum
of the Hamming distance and r.

Fthreshold(w, (w1, . . . , wN))
INPUT: The client’s input is a binary word w =
(w0, . . . , w`−1), the server’s input is a list (database) of N
binary words, w1, . . . , wN , where wi = (wi

0, . . . , w
i
`−1). The

server has additional inputs t1, . . . , tN , which are the thresholds
associated with each database word.
In addition, the parties know an upper bound dmax on the
Hamming distance between two words. In general, dmax = `,
but in our application we know that dmax ≤ 180.
OUTPUT: The client learns the indices i for which dH(w,wi) ≤
ti. The server learns nothing.
The protocol uses a homomorphic encryption function, Epk(·).
The plaintexts are in a ring or a field F . pk is a public key that
both parties know, but only the client knows the corresponding
private key and can decrypt messages.

1. The client sends the homomorphic encryption of each bit
of the binary representation of w = w0, . . . , w`−1.
The server receives the encrypted representation
{Epk(w0), . . . , Epk(w`−1)}. The following steps are
repeated for each database item wi ∈ {w1, . . . , wN}:

2. For each bit location j the server calculates Epk(ϑj),
where ϑj = wj⊕wi

j . The calculation can be done in the
following way (although a more efficient computation
method is described in the text below): Epk(ϑj) =
Epk(wj) ·pk (1− wi

j) +pk (1−pk Epk(wj)) ·pk w
i
j .

3. Using the homomorphic properties, the server sums the
results of the previous step and computes Epk(dH) =∑`−1

0
Epk(ϑj). The value dH is in the range

{0, 1, . . . , dmax} and is equal to the Hamming distance
between w and wi.
The server chooses a random value ri ∈ F , computes
the value Epk(dH + ri), and sends it to the client. Note
that with overwhelming probability of 1−dmax/|F|, this
addition operation does not involve a modular reduction.

4. The client receives Epk(dH +ri) and decrypts the result.
5. Next, the parties map the result to the appropriate output

value, by invoking a OTdmax+1
1 protocol where the client

is the receiver and the server is the sender:
- The input of the client is (dH +ri) mod (dmax+1).
- The server has inputs X0, . . . , Xdmax , where

Xj =

{
1 if 0 ≤ (j − ri) mod dmax ≤ ti
0 otherwise

Figure 2: The Fthreshold protocol where the client learns the
output.

Correctness: In Step 3 of the protocol the server com-
putes the value E(dH +ri), where ri was chosen at random.
If ri < |F| − dmax (which happens with overwhelming
probability) the computation of dH+ri in F does not involve
a modular reduction and has the same result as adding them

over the integers. In that case, reducing the result modulo
dmax +1 (in Step 5) is equal to (dH + ri) mod (dmax +1).
The client uses this result as its input to the 1-out-of-
(dmax + 1) OT protocol, while the server sets the sender’s
inputs in the OT to be shifted by ri locations. As a result,
the output of the client in the OT protocol is as required.

Security: The security of the protocol is proved assum-
ing that the oblivious transfer protocol is secure. Namely, the
proof is described in a hybrid model where oblivious transfer
is implemented by an oracle which receives the inputs of the
two parties and sends the output to the receiver. Recall also
that the setting is one where the two parties are assumed to
be semi-honest. According to [20], the proof can be carried
out according to the simulation paradigm, where we need to
show that it is possible to simulate the view of each party
(i.e., simulate the distribution of all messages that this party
receives and sends) given only the party’s input and output.
Given this simulation it is clear that the view reveals nothing
that cannot be computed from the input and output alone.

Let us first examine the client, whose input, consisting of
the private key and of w, and output, which consists of a
bit for each input of the server, are given to the simulator.
For each index i of an input wi of the server, the simulator
generates the first message from the client to the server,
which is an encryption of each of the bits of the client’s
input. The simulator then simulates the message received
by the client in Step 4, which is an encryption of a random
value R = dH + ri. Finally, the simulator sets the input of
the client to the OT, which is R mod (dmax + 1), and its
output of the OT which is the output bit corresponding to
the ith input of the server.

Consider now the server. The server’s set of input words
is given to the simulator. For each word, the simulator
generates the first message sent by the client, which is an
encryption of ` bits, all equal to 0. Since we assume that the
encryption scheme is semantically secure, the server cannot
distinguish these encryptions from encryptions of the actual
input of the client. Now, in the rest of the protocol the
server sends a message in Step 4, and sets its input to the
OT in Step 5. These values are a function, defined by the
protocol, of the server’s inputs (known to the simulator), of
the ciphertexts the server receives from the client, and of a
value ri chosen uniformly at random in F . The simulator
can therefore easily compute these messages by itself.

D. Optimizations and Overhead

Our goal was to implement a system computing this
protocol in near real-time, so that face identification can be
performed sufficiently quickly to let the system operators
take the required steps if a suspect is found. We therefore
aimed to minimize the online overhead of the system (after
all, any improvement by a constant factor can be of great
importance in practice).

Oblivious transfer. As it turns out, it is possible to move
most of the computation and communication overhead of
the OT to an preprocessing stage. A 1-out-of-dmax + 1 OT
protocol can be implemented using log(dmax+1) invocations
of 1-out-of-2 OT [27] (namely, 8 invocations of 1-out-of-
2 OT since dmax = 180). Moreover, as is described in
Section IV-A the public-key operations of the OT can be
precomputed before the inputs are known. The online phase
requires sending symmetric encryptions of the sender’s
inputs. In the Fthreshold protocol of Figure 2 the sender’s
inputs Xi are single bits. Therefore the online step of the
OT consists of sending a (log dmax)-bit long offset from the
receiver to the sender, and a string of dmax = 180 bits from
the sender to the receiver.

Homomorphic operations. The main online computational
overhead is thus that of computing the homomorphic op-
erations which are required for computing the Hamming
distance. In our experiments, we found that homomorphic
encryption takes about 38 msec, addition takes less than 1
msec, while subtraction takes about 62 msec. Computing
a subtraction of homomorphic encryptions is costly, as it
requires computing the additive inverse. (These results were
using a certain implementation in Java, as is detailed in
Section VI-B, but most implementations will have the same
ratio between the performance of the different operations). It
is therefore beneficial to minimize the number of subtraction
operations that must be computed.

Consider the computation of the Hamming distance of
w and wi. For each bit location j, the server must add
E(wj) to the sum, if its own bit wi

j is 0, or add to the
sum the value (1 − E(wj)) if its own bit wi

j is 1. The
computation is expected to perform ` additions and `/2
subtraction operations. The server can improve the overhead
by separately computing the values E(s0) =

∑
wi

j
=0 E(wj),

and E(s1) =
∑

wi
j
=1 E(wj). Let also use n1 to denote

the number of bits in wi which are equal to 1. Then the
encryption of the Hamming distance can be computed as
E(s0)−E(s1)+E(n1). The computation according to this
method requires ` homomorphic additions and only a single
subtraction per database item.

Reducing online communication. The basic protocol re-
quires the client to send a homomorphic encryption of
each of the ` = 900 bits of the face representation that
is has. Recall that the length of a Paillier encryption is at
least 2048 bits, and is more than 3000 bits is a reasonable
security is required. These encryptions must be sent after
the client receives its input. It is possible, however, to send
these encryptions in a preprocessing stage, thus reducing
the online communication overhead. In order to do that,
the client chooses a random ` bit binary string v0, . . . , v`−1

and sends the encryptions of these bites to the server in
the preprocessing stage. Later, when the client receives its
input, it sends the ` bit string w0 ⊕ v0, . . . , w`−1 ⊕ v`−1 to

the server. The server modifies its operation in Step 2 of
the protocol according to the correction bit vj ⊕ wj that it
received. Namely, instead of using its bit wi

j to decide what
operation to apply to the homomorphic encryption E(wj),
it uses the bit wi

j ⊕ (wj ⊕ vj) to decide which operation to
apply to the encryption E(vj). It is not hard to see that the
optimization listed above can also be modified to use E(vj)
and (wj ⊕ vj) instead of E(wj).

Further reducing the number of homomorphic operations.
Let us first assume that the optimization of the online
communication, described above, is not used, and the server
receives the encryptions E(w0), . . . , E(w` − 1). Consider
the ith item in the server’s database and examine pairs
of the bits pf its representation. If 〈wi

o, w
i
1〉 = 〈0, 0〉,

then the value E(w0 + w1) must be added by the server
to the Hamming distance. If 〈wi

o, w
i
1〉 = 〈0, 1〉, then the

value E(w0 + (1 − w1)) must be added to the Hamming
distance, etc. Let the server first compute the four possible
combinations E(w0 +w1), E(w0 +1−w1), E(1−w0 +w1)
and E(2 − w0 − w1). Then for each of the N items in
the server’s database it now only needs to perform a single
addition operation, instead of two, in order to add the right
value to the sum. It is not hard to see that the same method
can be also be applied when the optimization of online
communication is used. In that case the server receives in
the preprocessing phase the values E(v0), . . . , E(v`−1), and
precomputes the four possible combinations of each pair of
successive bits. Then, after receiving the correction string,
it decides which of the four options it must add to the sum.

In the preprocessing phase this method computes 7 ho-
momorphic additions and 2 subtractions for each of the `/2
pairs of input bits. The gain is in the online phase, where for
each of the N database items the server needs to compute
only `/2 homomorphic additions (instead of ` additions).

While we only implemented this optimization with pairs
of input bits, it can be extended to handle sets of three or
more consecutive bits. By processing sets of three bits, for
example, the overhead of the preprocessing phase increases
to 16/3 ·` additions and ` subtractions. The online overhead
is reduced to `/3 addition operations.3

Parallelizing the computation. After the server receives
the homomorphic encryptions from the client, it runs, for
each item in its database, a computation which is indepen-
dent of the other elements in the database. It is therefore
easy to parallelize the operation of the server such that each
processor or core handles a different set of faces in the
server’s database.

Overall online overhead. The overall online overhead is
minimal. Let us summarize the operations that must be
performed after the client receives its input. In Step 1 of the

3We also note that the algorithm essentially computes different sums
of the same set of homomorphic encryptions, and therefore the “Four
Russians” method [29] can be used to further minimize the total number of
addition operations. We have not implemented this improvement, though.

protocol, the client sends ` bits to the server. Then Steps
2-5 are repeated for every item in the server’s database
(and can be parallelized). In Step 2, the server performs
`/2 homomorphic additions. In Step 3 it sends to the client
a single homomorphic encryption. In Step 4 the client
computes a single decryption. In Step 5 the client sends
a log dmax = 8 bit offset to the server, and the server sends
back ` bits to the client.

E. A threshold protocol where the server receives the output

A simple way to convert the basic Fthreshold protocol
to one where the server, rather than the client, receives
an output, is for the server to encrypt the values that the
client learns in the final OT. Namely, with probability 1/2
the server keeps its inputs to the OT as before, and with
probability 1/2 it decides to flip all inputs (from 0 to 1, and
vice versa). As a result the client learns nothing from its
output in the OT. The protocol then requires the client to
send back its output to the server, which can decrypt it and
learn the correct output value.

The modified protocol described above requires adding an
additional communication step to the protocol. It is possible
to achieve the same goal without adding this step, as we
next describe.

The protocol where the client receives the result, i.e. the
protocol of Figure 2, uses an OT where the client is the
receiver, to check if the value that the server receives in the
Step 4, dH + ri, is greater than the threshold ti. To enable
the server to receive the result, both parties must invoke
an OT protocol with opposite roles, where the server is the
receiver. This protocol is described in Figure 3. The only part
in which it differs from the previous protocol is in Step 5:

Before the OT protocol begins, the client knows dH + ri,
which is computed as in the previous protocol. The server
knows ri and ti. It is also known that dH , ti ≤ dmax, and
therefore dH − ti is in the range [−dmax, dmax]. Let us
assume for a minute that ri = 0. In that case the parties can
run an OT where the server is the receiver and its input is
ti, and the client has 2dmax + 1 inputs, X−dmax , . . . , Xdmax

such that Xi = 0 if i ≤ dH and is equal to 1 otherwise.
The server learns 1 if, and only if, dH − ti < 0. Now,
in actuality the value ri is random and is unknown to the
client who knows only dH + ri. The parties can now check
if (dH + ri) − (ti − +ri) < 0. The check can be done by
reducing both values modulo 2dmax + 1, since it is known
that −dmax ≤ (dH + ri) − (t− + ri) ≤ dmax. The server
therefore uses the value ti + ri mod (2dmax + 1) as its
input in the OT. The client prepares 2dmax +1 items, where
X(dH+R−dmax) mod 2dmax+1, . . . , XdH+R mod 2dmax+1 = 1
and XdH+R+1 mod 2dmax+1, . . . , XdH+R+dmax mod 2dmax+1 =
0.

As for efficiency, note that the server’s input ti + ri, i.e.
the sum of the threshold and a random value, is known
to the server even in the preprocessing phase. Thus, in the

preprocessing step of the OT the server can learn the exact
keys that it needs in the online phase. This saves one round
in the online stage, compared to the protocol where the client
learns the output.

Fthreshold(w, (w1, . . . , wN))
INPUT: The input of the protocol is as in the protocol of
Figure 2.
OUTPUT: The server learns if dH(w,wi) > ti. The client learns
nothing.
1-4. Steps 1-4 are run as before. In Step 4 the client receives

Epk(dH + ri) and decrypts the result.
5. Next, the parties compute the appropriate output value,

by invoking a OT2dmax+1
1 protocol where the server is

the receiver and the client is the sender:
- Let LD = 2dmax. The input of the server is (ti +
ri) mod (LD + 1).

- The client has inputs X0, . . . , XLD , where

Xj =


1 if dH + ri − dmax mod (LD + 1) ≤ j

and j ≤ dH + ri mod (LD + 1)

0 otherwise

Figure 3: The Fthreshold protocol where the server learns the
output.

The security of the protocol is proved similarly to the
security of the protocol of Figure 2. The details are given
in the full version of the paper.

F. Computing Fmin+t

The Fmin+t functionality finds the item in the server’s
database whose distance from the client’s input is mini-
mal, as long as this distance is below the threshold. This
functionality can be implemented in a rather straightforward
manner using a generic method for secure computation,
such as Yao’s protocol. We describe in the Appendix a
specific protocol for this task, which is more efficient and
more simple to implement, as it does not use a circuit
representation of the function, and is based on oblivious
transfer as the previous protocols that we have described.

G. Security against malicious adversaries

The protocols that we described are secure against semi-
honest adversaries. A malicious adversary can deviate from
the prescribed protocols, and can definitely change the
function that is computed and learn information about the
other party’s input.

There are known generic transformations of any semi-
honest protocol to a protocol secure against malicious ad-
versaries [20], but these are not efficient in practice. More
efficient protocols with this level of security were presented
for specific applications. There are, however, several obsta-
cles that need to be overcome in the case of the applications
that we discuss: (1) The protocol must ensure that the inputs
w, w′ of the parties are in a format of a face representation,

rather than being arbitrary binary vectors (namely, that the
number of “1” bits and their locations are as defined in
Section III-C). (2) The client must send in Step 1 encryptions
of bits rather than of arbitrary values. (3) The server must
send back an encryption of the Hamming distance (plus
a random value), rather than of another function of the
messages it receives. (4) The inputs to the OT must be
according to the protocol.

Some of these issues can be solved rather efficiently (see
for example [28] for a method for verifying the inputs to
the OT stage, by replacing the OT with oblivious poly-
nomial evaluation). However, ensuring in an efficient way
that the entire protocol computes the desired functionality
seems challenging. Another, possibly simpler, option is to
design protocols which provide security only against covert
adversaries, roughly meaning that adversaries which do not
behave according to the protocol are caught with some
non-negligible probability. This level of security might be
sufficient to deter most attacks in our setting. See [30] for
a discussion of security against covert adversaries.

V. AN EXAMPLE OF A REAL-TIME SECURITY SYSTEM

The proposed algorithms can be combined in different
configurations depending on the application. In this section
we describe an example of a security system for recognition
of suspected individuals using a remote camera module
installed in a public place.

As was described in Section II, the system is composed
of a server and a client. During the preprocessing phase,
the server generates face representations of suspects, as
described in Section III-C, and converts them to binary
vectors as was shown in Section IV-B. The individual
thresholds are computed as is described in Section III-D. The
binary representations and individual thresholds are stored
in the server. The cryptographic protocol is initialized by
the client, which sends encryptions of the bits of a random
binary vector, and performs the preprocessing step of the
OTs. The server computes the sum of consecutive pairs of
bits, as is required by the optimized protocol.

The client obtains an image from a real-time face de-
tection algorithm (e.g., [1], [2]), builds a binary face rep-
resentation (Sections III-C, IV-B) and sends homomorphic
encryptions of its bits to the server. For each subject i in the
database, the parties executes the Fthreshold cryptographic
algorithm. The output, which can be learnt by one party or
both parties, according to the variant of the protocol that is
used, is a set of binary bits, one for every database entry. If
all bits are equal to 0 (which is the most likely case, since
most of the people should not match any suspect), the client
continues with the next image. If one or more of the bits
are 1 then the operator of the system is notified.

VI. EXPERIMENTS

As was detailed in Section II, the proposed system can be
separated into a face recognition part and a secure computa-
tion part. The face recognition part generates representations
of the faces in the server’s database and of the face acquired
by the client, and is run independently by each party. In the
secure computation part the two parties jointly execute a
secure protocol which checks if there is a match between
the acquired face and the server’s database.

In light of this architecture we separated our experiments
into two parts. We first examined the face recognition
algorithm used in SCiFI, with an emphasis on examining
its accuracy. (Our current implementation of the algorithm
in Matlab and takes about 10 seconds to process a face; it
is clear that an implementation in C will be faster, probably
by a factor of 4-5.) Then we examined the performance, i.e.
latency, of the secure computation protocol.

A. Face Recognition Experiments

The face recognition experiments consist of two parts.
The first part (presented in Section VI-A1) includes tests
that simulate a real security systems with server and client.
The second part (presented in Section VI-A2) includes
experiments conducted according to the protocols used in
the face recognition community. These tests are performed
on benchmark sets which allows direct comparison with the
state of the art in face recognition.

1) Real security system experiment: Our tests simulate
a real security systems that stores a list of subjects in the
server and decides whether an input image obtained by a
client matches one of the faces on the list. To determine
a threshold on the Hamming distance for each person we
constructed an ensemble of people which included other
individuals from the server’s list and images of unrelated
people which represent typical inputs to the system. An
individual threshold for the ith subject is set based on the
smallest Hamming distance between him and the rest of the
people in the ensemble.

We constructed the public set Y of faces from which the
part vocabularies will be taken, by rendering images with
frontal illumination using a subset of 34 3D models of faces
supplied by USF.4

We tested the proposed face representation on two bench-
mark databases, checking its robustness to various factors
that influence the intra-user variation, and comparing it
to the Eigenfaces method, which was the only other face
recognition algorithm for which a secure protocol is known.
(For the Eigenfaces method we pre-aligned all images and
normalized them for brightness.)

4USF HumanID 3D Face Database, Courtesy of Prof. Sudeep Sarkar,
University of South Florida, Tampa, FL.

Large illumination Variation: We tested the robustness
of the representation to large illumination changes on the
frontal pose subset of CMU-PIE database [5] that contains
images of white, black, and asian faces of males and females,
in total 68 subjects under 43 illuminations (see Figure 1, top
row for a few examples from this data set).

The server’s list included 12 persons under frontal illu-
mination. The client’s set (a stream of images) contained
2912 images (which is equivalent to an hour of video,
with a processing rate of 1 image per sec.) of 68 subjects,
from which 504 belonged to the subjects from the server’s
list. All of the client’s images contained faces in a frontal
pose under large illumination changes, which make the face
identification task much harder. About third of the subjects
on the server’s list wear glasses, but then remove them in
half of the client’s images. The results are shown (Figure
4) in a form of a recognition rate plotted as a function of
false positive rate. For example, our method spots suspects
in about 93% of images with 15% false alarms. This is
dramatically better than the Eigenface performance, which is
less than 50% recognition at this false alarm rate. This result
was, however, expected, since Eigenface cannot generalize
well to unseen conditions, such as changes in lighting and
local occlusions such as glasses.

Near-frontal changes in pose, mild facial expressions
and mild illumination changes: Although the current imple-
mentation of the system does not allow large variations in
pose or facial expression, it can still handle some variation
in these factors. To test our representation in a more realistic
setting, namely, near-frontal variation in pose and mild
changes in facial expressions and illumination, we ran our
system on the gallery and the fc probe set (i.e. thet set
of test images) of the FERET [4] database. The probe set
includes 194 images taken with a different camera and under
different illumination than the images in the gallery set
which includes 1196 subjects. The bottom row of Figure 1
shows some of the variations present between the gallery set
and the probe set. We took 100 subjects from the fc probe
set for the server’s list, and used all 1196 gallery images
as a client’s set. Figure 5 shows the results of our method
compared to the Eigenface, which again shows the benefit
of our approach. For example, with a false alarm rate of 5%,
our algorithm has 97% recognition success while Eigenface
succeeds with probability of about 87%.

Robustness to illumination changes and partial oc-
clusions: One of the advantages of using a part-based
representation is its robustness to partial occlusions. We
tested the effects of partial occlusions in eye, nose and
mouth areas separately. To simulate occlusions we used a
square area with size of 20% of the image width filled with
random noise (Figure 8 shows some examples of partial
occlusions used in the test). Occlusion was applied to images
obtained from the client and not to images in the server’s
list. Table II summarizes the recognition results, tested on

images of 68 people from the CMU-PIE database under 10
illuminations and partial occlusions. The right column of the
table describes the number of patches with at least half of
their area occluded. For example, hiding the nose hides 3
of the 30 patches, and yet the recognition rate shows almost
no degradation (92.8% compared to 93% for a 15% false
positive rate).

2) Identification Performance: In order to test the recog-
nition power of the proposed binary representation we used
it in an identification task in a closed universe, meaning
that all probes are in the gallery (see [4])5. The tests were
conducted on benchmark data sets to allow comparison with
the existing methods.

Following the FERET [4] evaluation of identification in
a closed universe, we report the performance statistics by
a graph of cumulative match. The horizontal axis of the
graph is a rank (rank=c corresponds to the c persons who
have the smallest distance to the probe among all persons
in the gallery), and the vertical axis is the probability of
identification. These graphs are obtained as follows: for
each probe the galleries are ordered by their distance to the
probe (from minimum to maximum). The rank corresponds
to the threshold on the number of galleries considered.
The recognition is defined to be successful for rank r, if
the correct person is found within the r galleried in the
ordered list corresponding to the probe. Our plots show the
percentage of probes that are of a particular rank or less. For
example, in Figure 6, 80% of the probes have the correct
identity as their closest match, and 95% of the probes have
the correct identity among the 6 closest matches.

In the large gallery test, FERET reports the top 50 matches
for each probe [4]. In our experiments we set the number of
top matches relative to the number of subjects in the gallery.

CMU-PIE database: In the CMU-PIE frontal pose
subset [5] we used frontal illumination with ambient light

Figure 4: The illumination robustness test on CMU-PIE

5The gallery contains images of people stored in the database, probes
are images that must be identified. Each probe image is compared against
all images in the gallery for identification

Figure 5: Robustness test to a combination of several factors.
The test has been performed on the gallery and fc probe set
of the FERET database.

as a gallery image and other 42 illuminations as probes, in
total 2856 probe images. Note that our setting tests not only
illumination variation, but also the effects of glasses, since
28 out of 68 subjects wear glasses in the gallery image and
then remove them in the half of the probe images (without
ambient light). The results are shown in Figure 6. A separate
test in which all galleries and probes include ambient light
shows 100% recognition. A test in which all galleries and
probes have no ambient light and no glasses shows 99%.
The recognition results in this test are comparable to the
state of the art [31], [32].

FERET fc: We ran our tests on the gallery and fc
probe sets of FERET [4]. The gallery of FERET contains
1196 subjects and the fc probe set includes images of 194
subjects taken with a different camera and under different
illumination. Besides the illumination, some variation in fa-
cial expression (smiling and blinking) and near-frontal pose
variation are present between the gallery and the probe sets.
The results are reported in Figure 7. The recognition results
on FERET are lower than CMU-PIE, but are comparable
with previously reported results [4], [33]. The gallery in
this test is about 17 times larger than in CMU-PIE, which
explains the degradation in performance.

B. Secure Computation Experiments

A prototype of SCiFI was implemented in Java using
Sun’s JDK 1.6.0 12. Homomorphic encryption was imple-
mented using Paillier’s algorithm, with a modulus N of
length 1024 bits.6 The implementation of OT2

1 was based
on the Bellare-Miacli scheme and El Gamal encryption in a
subgroup of order q of Z∗p , where |p| = 1024 and |q| = 160.
Symmetric encryption was done using AES.

The results, which are detailed below, are extremely fast,
taking about 0.3 second to compare the vector representing
the client’s input with the vector representing an image in

6The implementation was based on the Java implementation in
http://www.bricks.dk/˜jurik/research.html.

Figure 6: Identification test on the frontal sub-set of CMU-
PIE.

Figure 7: Identification test on the fc probe set of FERET.

the server’s database. It is also clear that an implementation
in the C language, with a faster cryptographic library, would
have a considerably better performance.

The experiments were performed on two Linux machines.
The machines were located in two different buildings and
communicated using sockets through TCP/IP over the local
network. We turned off Nagle algorithm in order to prevent
the ”ACK delay” (turning off Nagle algorithm indeed greatly
improved the performance of the communication layer). The
server machine was an 8 core machine of 2.6 GHz AMD
Opteron processors and 1GB RAM. The client machine had
a 2.8 GHz dual core Pentium D processor and 2GB RAM.

The protocol used in the SCiFI implementation is the
Fthreshold protocol where the server learns the output. As we
described earlier in the text, the computation is composed
of two phases, a preprocessing phase which is run before
the client’s input is known, and an online execution phase.
Our goal was to optimize the performance of online phase.
Next, we detail the steps of each party.

Client preprocessing phase. In the preprocessing phase
the client (1) chooses a random vector of 900 bits and
sends the encryption of these bits to the server, and (2)
runs the preprocessing phase of the OT, as is described in

Section IV-A.
Server preprocessing phase. For every pair of consecutive

bits sent by the client, i.e., E(v2j), E(v2j+1) the server
precomputes the four possible values that can be added to
the Hamming distance, namely E(v2j +v2j+1), E(v2j +1−
v2j+1), E(1 − v2j + v2j+1) and E(2 − v2j − v2j+1). This
computation is performed only once and used for all images
in the database. The server also runs the preprocessing phase
of the OT.

Client execution phase. After the client captures an image
and computes its representative vector, it sends a correction
vector which is the exclusive-or between this vector and
the random vector chosen by the client in the preprocessing
phase. This is a string of 900 bits. Afterwards the client
decrypts the result that the server sends it, and both parties
invoke the OT protocol where the client is the sender.

Server execution phase. After receiving the correction
vector, the server computes the encryption of the Hamming
distance between every image in the database and the client
image. (The server can parallize this step.) It then sends to
the client an encryption of the sum of the Hamming distance
and a random value. Afterwards it runs the OT protocol with
the client and learns the final result.

Results: We ran multiple experiments where the server
stored a list of 100 face representations. Following are the
average timing measurements results of the experiments.

Preprocessing. Offline preprocessing at the client took
about 213 sec. Of this time, 38 seconds were spent on
preparing 900 homomorphic encryptions, 71 seconds were
used to send these encryption to the server, and 92 seconds
were spent on running the preprocessing phase of the 1-out-
of-180 OT (which is used since we set dmax = 180). As
can be seen, almost half of the preprocessing time is spent
on preparing and sending the Homomorphic encryptions. As
for the server, the offline preprocessing time of the server
includes receiving the encryptions (this time was already
counted by us at the client side); summing every possible
combination of each pair of consecutive bits, a step which
takes about 57 sec; and running the preprocessing of the OT
(this step was also already counted by us at the client side).

Online performance. The previous preprocessing steps
optimize the performance tremendously, and the resulting
online execution time is minor for each image. The online
execution time of the server for an image after receiving the
correction binary vector is only about 0.31 second. This time
is divided to (1) Computing the Hamming distance for the
image, adding to it a random value and sending the result
to the client; these steps require .28 sec. (2) Running the
online step of the OT protocol, where the server learns the
result, this step takes about .012 sec.

The run time is obviously linear in the size of the server’s
database. The total online time for comparing the client’s
input to 100 database images in only about 100 · 0.31 = 31
seconds. The bulk of the server’s computation can be fully

Occluded Recognition rate Num. of occluded
Part for 15% false positives parts

Left eye 89% 10/30
Mouth 91.5% 4/30
Nose 92.8% 3/30

Table II: Partial occlusion results on a subset of CMU-PIE.

parallelized, and therefore using, e.g., six processors, reduces
the recognition time in this example to about 5 seconds.

Figure 8: Examples of tested occlusions.

REFERENCES

[1] M. Osadchy, Y. LeCun, and M. Miller, “Synergistic face
detection and pose estimation with energy-based models,”
Journal of Machine Learning Research, vol. 8, pp. 1197–
1215, May 2007.

[2] P. Viola and M. Jones, “Rapid object detection using a boosted
cascade of simple features,” in Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, 2001, pp. 511–518.

[3] C. Chen, R. Veldhuis, T. Kevenaar, and A. Akkermans, “Bio-
metric binary string generation with detection rate optimized
bit allocation,” in CVPR Workshop on Biometrics, 2008, pp.
1–7.

[4] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss,
“The FERET evaluation methodology for face-recognition
algorithms,” PAMI, vol. 22, no. 10, pp. 1090–1104, 2000.

[5] T. Sim, S. Baker, and M. Bsat, “The CMU pose, illumination,
and expression database,” PAMI, vol. 25, pp. 1615–1618,
2003.

[6] A. Juels and M. Sudan, “A fuzzy vault scheme,” in Symposium
on Information Theory, 2002.

[7] P. Tuyls and J. Goseling, “Capacity and examples of template-
protecting biometric authentication systems,” in ECCV Work-
shop BioAW, 2004.

[8] Y. Dodis, R. Ostrovsky, L. Reyzin, and A. Smith, “Fuzzy
extractors: How to generate strong keys from biometrics and
other noisy data,” SIAM J. Comput., vol. 38, no. 1, pp. 97–
139, 2008.

[9] Y. Adini, Y. Moses, and S. Ullman, “Face recognition: the
problem of compensating for changes in illumination direc-
tion,” PAMI, vol. 19, no. 7, pp. 721–732, 1997.

[10] M. Turk and A. Pentland, “Eigenfaces for recognition,” Jour-
nal of Cognitive Neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[11] N. K. Ratha, S. Chikkerur, J. H. Connell, and R. M. Bolle,
“Generating cancelable fingerprint templates,” PAMI, vol. 29,
no. 4, pp. 561–572, 2007.

[12] T. Boult, “Robust distance measures for face-recognition
supporting revocable biometric tokens,” in IEEE, 7th Intl.
Conf. on Automatic Face and Gesture Recognition, 2006, pp.
560–566.

[13] S. Avidan and M. Butman, “Blind vision,” in ECCV (3).
Springer, 2006, pp. 1–13.

[14] A. Senior, S. Pankanti, A. Hampapur, L. Brown, Y.-L. Tian,
A. Ekin, J. Connell, C. F. Shu, and M. Lu, “Enabling video
privacy through computer vision,” IEEE Security and Privacy,
vol. 3, no. 3, pp. 50–57, 2005.

[15] F. Dufaux and T. Ebrahimi, “Scrambling for Video Surveil-
lance with Privacy,” in IEEE Workshop on Privacy Research
in Vision. IEEE, 2006.

[16] E. M. Newton, L. Sweeney, and B. Malin, “Preserving privacy
by de-identifying face images,” IEEE Trans. on Knowl. and
Data Eng., vol. 17, no. 2, pp. 232–243, 2005.

[17] T. Boult, “Pico: Privacy through invertible cryptographic
obscuration,” Computer Vision for Interactive and Intelligent
Environment, 2005, pp. 27–38, 2005.

[18] J. Schiff, M. Meingast, D. Mulligan, S. Sastry, and K. Gold-
berg, “Respectful cameras: Detecting visual markers in real-
time to address privacy concerns,” in Int. Conf. on Intelligent
Robots and Systems (IROS), 2007, pp. 971–978.

[19] A. Yao, “How to generate and exchange secrets,” in FOCS,
1986, pp. 162–167.

[20] O. Goldreich, Foundations of Cryptography: Volume 2, Basic
Applications. Cambridge University Press, 2004.

[21] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. La-
gendijk, and T. Toft, “Privacy-preserving face recognition,”
in Proc, of the 9th International Symposium on Privacy
Enhancing Technologies (PET). Springer, 2009, p. 253.

[22] A. Sadeghi, T. Schneider, and I. Wehrenberg, “Efficient
Privacy-Preserving Face Recognition,” in 12th Interna-
tional Conference on Information Security and Cryptology
(ICISC09), LNCS. Springer, 2009.

[23] D. G. Lowe, “Distinctive image features from scale-invariant
keypoints,” IJCV, vol. 60, no. 2, pp. 91–110, 2004.

[24] C. T. Yuen, M. Rizon, W. S. San, and M. Sugisaka, “Au-
tomatic detection of face and facial features,” in ISPRA’08,
2008, pp. 230–234.

[25] N. Gourier, D. Hall, and J. L. Crowley, “Facial features
detection robust to pose, illumination and identity,” in Int’l
Conf. on Systems Man and Cybernetics, 2004.

[26] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in EUROCRYPT, 1999, pp. 223–
238.

[27] M. Naor and B. Pinkas, “Computationally secure oblivious
transfer,” J. Cryptology, vol. 18, no. 1, pp. 1–35, 2005.

[28] A. Jarrous and B. Pinkas, “Secure hamming distance based
computation and its applications,” in Applied Cryptography
and Network Security conf. (ACNS), 2009, pp. 107–124.

[29] V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev, “On eco-
nomical construction of the transitive closure of an oriented
graph,” in Soviet Math. Dokl, vol. 11, no. 1209-1210.

[30] Y. Aumann and Y. Lindell, “Security against covert adver-
saries: Efficient protocols for realistic adversaries,” in TCC,
ser. Lecture Notes in Computer Science, S. P. Vadhan, Ed.,
vol. 4392. Springer, 2007, pp. 137–156.

[31] S. Romdhani, V. Blanz, and T. Vetter, “Face identification by
fitting a 3d morphable model using linear shape and texture
error functions,” in ECCV, 2002, pp. 3–19.

[32] Y. Wang, Z. Liu, G. Hua, Z. Wen, Z. Zhang, and D. Samaras,
“Face re-lighting from a single image under harsh lighting
conditions,” in CVPR, vol. 1, 2007, pp. 1–8.

[33] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description
with local binary patterns: Application to face recognition,”
PAMI, vol. 28, no. 12, pp. 2037–2041, 2006.

APPENDIX

The min functionality: The basic building block used
for computing the Fmin+t functionality is a protocol for
outputting the minimum of two numbers (which will be
used for comparing Hamming distances). More specifically,
in this protocol, denoted min, the client has two inputs
y0, y1, where yi = di + ri, 0 ≤ d0, d1 ≤ `, and addition is
performed in the field or ring over which the homomorphic
encryption is defined. The server has inputs r0, r1. The
server’s output is a random number r′. The client’s output
is b ∈ {0, 1}, which is the index of the smaller element
among d0, d1, and the value min(d0, d1)+r′, where the min
operation is computed over the integers. (This basic protocol
will later be used for computing the minimum among N
numbers, by running a tournament between these N values.)

The basic observation behind the protocol is that the value
d0 − d1 is in the range [−dmax, dmax] and is negative iff
d0 < d1. Therefore a OT2dmax+1

1 protocol, adapted to the
use of the keys r0, r1, can compute the functionality.

The min protocol is described in Figure 9. Correctness
follows from setting the server’s inputs in the OT protocol
such that the client retrieves r′ − r0 if d0 < d1, and r′ − r1

otherwise. Security is implied by the security of the OT
protocol. The overhead is that of running a single OT2dmax+1

1

protocol, namely of executing log(2dmax+1) invocations of
OT2

1, and encrypting and sending 2dmax + 1 values.
The Fmin+t functionality.: Running the basic Fthreshold

protocol until Step 4 results in the client learning DH + ri

and the server learning ri. This is exactly the input to the
min protocol, and therefore the parties can run a tournament

min(y0, y1; r0, r1)
The protocol uses a ring or a field F over which a homomorphic
encryption scheme is defined. The inputs d0, d1 are integers in
the range [0, dmax]. We note that the value of dmax is negligible
compared to |F|.
INPUT: The client’s input is y0, y1, where y0 = d0 + r0, y1 =
r1 + d1 and addition is done in F . The server’s input is r0, r1.
OUTPUT: The client receives b, db+r

′, where b ∈ {0, 1} is such
that db < d1−b, where comparison is done over the integers.
The server obtains r′, which is chosen randomly in F .

1. The client computes (over F) the value α = y0 − y1 =
(d0 − d1) + (r0 − r1). The client then computes (over
the integers) β = α mod 2dmax + 1.
Note that if dmax < r0 − r1 < |F| − dmax − 1,
an event which happens with overwhelming probability
since dmax � F , then 0 ≤ (d0−d1)+(r0−r1) ≤ |F|−1
and therefore β is equal to the result of computing
y0 − y1 = (d0 − d1) + (r0 − r1) mod 2dmax + 1 over
the integers.

2. The parties run a OT2dmax+1
1 protocol where the client

is the receiver and the server is the sender. The input of
the client is β.
The server chooses a random r′ ∈ F , and sets its inputs
in the OT such that the client learns the value 0|(r′ −
r0) if y0 < y1, and 1|(r′ − r1) otherwise. This is done
by setting the inputs X0, . . . , X2dmax such that Xi =
0|(r′ − r0) if i − (r0 − r1) mod 2dmax + 1 is in the
range [dmax +1, 2dmax] and Xi = 1|(r′−r1) otherwise.

3. Denote the value learned by the client in the OT as b|γ.
Then the client sets its output to be yb + γ = db + rb +
(rb − r′) = db + r′. The server’s output is r′.

Figure 9: The min protocol.

in which the minimal DH value is computed: The first stage
of the tournament compares adjacent values received from
the Fthreshold protocol. The next stage compares the results
of the previous stage. After log N stages the tournament
finds a winner which is the minimal value. Note that the
min protocol reveals which of the two items it compares is
smaller, whereas the Fmin+t functionality must not reveal
any such intermediate result. Therefore the server must
permute the order of its inputs each time Fmin+t is run.

The protocol described above finds the minimal Hamming
distance. More accurately, the server and client learn outputs
outs, outc, respectively, such that the sum of these values
is the minimal Hamming distance. However, the Fmin+t

functionality outputs the minimal Hamming distance only
if it is smaller than the threshold. Therefore an additional
step of the protocol must check if outs+outc is smaller than
the threshold, and outputs outc+outs and the corresponding
index if this is indeed the case. This step can be implemented
using a solution to the millionaires problem [19]. (Some
additional care must be taken if a different threshold is used
for every face in the server’s list. The details will be given
in the full version of the paper.)

