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 Grade 
 Based on  

 Homeworks 70% 

 A final take home project/large homework/exam 30% 

 Participation in class 

 Email: benny@pinkas.net 

 

 Web page: http://www.pinkas.net/courses/sc/index.html 

 

 Goal: Learn how to perform a distributed computation 
while not revealing the inputs 

mailto:benny@pinkas.net
http://www.pinkas.net/courses/atc/index.html


Course Outline 
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 Course Outline 

 Cryptography is more than just encryption/signatures: 

 Oblivious transfer, secure computation. 

 Privacy preserving database operations: Private 

information retrieval (PIR), computing intersections, 

keyword search. 

 Search on encrypted data.  



Today Lecture: Oblivious Transfer 

February 25, 2014 Secure Computation page 4 

 Web resources: 

 Ronald Cramer’s lecture notes, 
http://homepages.cwi.nl/~cramer/papers/CRAMER_revised.ps 

 

 Boaz Barak’s lecture 

http://www.cs.princeton.edu/courses/archive/fall05/cos43
3/lec22.pdf 

 

 Naor, Pinkas, “Computationally Secure Oblivious Transfer” 

http://www.springerlink.com/index/10.1007/s00145-004-
0102-6 

 Efficient Secure Two-Party Protocols”, Hazay and Lindell, 2010. 
Ch. 7.  
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An application: computing “AND” privately 
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 Two players, P1 and P2, have binary inputs a and b. 

 They wish to compute a AND b without revealing any other 
information about their inputs. 

 

 If P1’s input is a=0, and he learns that (a AND b) = 0, he does 
not learn whether P2’s input is 0 or 1. 

 

 This is the first example of “secure computation” that we will 
learn 

 

 Applications? 

 dating 



1-out-of-2 Oblivious Transfer 
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 Two players: sender and receiver. 

 Sender has two inputs, x0, x1. 

 Receiver has an input j  {0,1}. 

 Output: 

 Receiver learns xj and nothing else.  

 Sender learns nothing about j. 

 

 Depending on the OT variant, the inputs x0,x1 could be 
strings or bits. 

 

 Suppose that we have a construction of bit OT, how can 
we solve the AND computation problem? 



Computing “AND” Privately using OT 
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 P1 plays the sender’s part, P2 is the receiver.  

 P1 sets the sender’s inputs to be x0=0, x1=a. 

 P2 sets the receiver’s input to be j=b. 

 They run an OT protocol, and P2 sends the final 

answer to P1. 

 The output is (1-j)·x0+j·x1 = (1-b)·0+b·a = a·b. 

 Privacy (hand-waving): 

 If b=0 then the result that P2 obtains in the OT protocol is 

always 0 and does not reveal anything about a. 

 If b=1 then the result obtained in the OT protocol is equal 

to a, but it is also equal to a·b which is the legitimate 

output of P2. 



The Input Equality Problem 
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Alice 

a 

Is a=b? 

Bob 
b 

Leak no other information! 



The Millionaires Problem 
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Alice 

x 

Whose value is greater? 

Bob 
y 

Leak no other information! 



Ideal Solution for the Secure Computation Problem 
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TrustMe 

y x 

Well ... 

Alice 

x 

Bob 

y 



What properties would we want of secure 

computation? 
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 Privacy: No party should learn anything more than its 
prescribed output (and anything derived from it). 

 

 Correctness: The output of all parties is correct. 

 

 Independence of inputs: Corrupted parties must choose 
their inputs independently of the honest parties’ inputs. 
(Think about auctions.) 

 

 Fairness: Corrupted parties receive their outputs if and 
only if the honest parties also receive their outputs. 
(Think about signing contracts.) 



Secure Computation (Informal) Definition 
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For any adversary there is a comparable one working 

in the Ideal Model with similar output 

OR 

A protocol is secure if it emulates the ideal solution 

(the participants do not learn any information that they 

do not learn in the ideal model) 



Security definitions 
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 We must first specify the power of the adversaries. 

 Semi-honest vs. malicious adversaries: 

 Semi-honest (honest but curious) adversaries follow the 
protocol, but might try to learn additional information from 
the messages they receive during protocol execution. 

 Malicious adversaries might behave arbitrarily. 

 For instance, if the protocol requires P1 to send to P2 a 
random number z, a malicious P1 might define z by choosing a 
random y and defining z=Enc(y). 

 

 Can now define what it means for an OT protocol to be 
secure. These definitions can be applied to both semi-
honest and malicious adversaries. 



Security definitions: comparison to the ideal model 
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 Must state what it means to learn nothing but the output 
of the protocol. 
 Intuitively, a protocol is secure if whatever can be computed by 

a party participating in the protocol can be computed based on 
its input and output only.  

 

 Comparison to the ideal model 
 Ideal implementation: 

 There is a trusted third party (TTP). It receives the inputs from the 
parties, computes the output, and sends it to the parties. 

 For OT: the TTP receives x0,x1 from the sender, and j from the 
receiver. It sends xj to the receiver. 

 For AND: TTP receives a,b from P1,P2, and returns a AND b.   

 Security – comparison with the ideal model 
 Given a player’s interaction with the TTP, it is possible to simulate the 

interaction it has in the protocol. 



Security of Computing “AND” Privately using OT 
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 Privacy against a corrupt P2:  (against semi-honest adversaries) 

 Show here that P2 does not learn more than the “AND” result. 

 Must show that given the output of the “AND” function, it is 
possible to provide P2 with its “view” in the “AND” protocol 
(namely, the output of the OT). 

 Proof: We receive the output of the “AND” function and can 
simulate the input of the sender (P1) in the OT protocol.  
Therefore P2’s output in the OT protocol is a function of the 
“AND” result alone. 
 Our input:   a AND b, and P2’s input b. 

 We set x0=0, x1=a AND b. 

 The output of the protocol is as in the original protocol. 

 

 How can we show a similar argument showing that P1 does not 
learn more than the “AND” result?  



Security of Computing “AND” Privately using OT 
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 Privacy against a corrupt P1:  (against semi-honest adversaries) 

 We show that P1 does not learn more than the “AND” result. 

 Proof:  Recall that P2 is the receiver in the OT.  After receiving 
the output of the OT it sends it to P1. 

 We receive the output of the “AND” function and construct 
the input of the receiver in the OT protocol.  Therefore P1’s 
output in the OT protocol is a function of the “AND” result. 
 Our input:   a AND b, and P1’s input a. 

 We set the receiver’s input to be j=a AND b. 

 P1’s input to the OT is, as in the original protocol, (0,a). 

 If (a AND b) is 0 then the output of the protocol is 0; if (a AND b) is 
1 the output of the protocol is a (and in this case it holds that a=1). 
Therefore the output is as in the original protocol. 



Constructions of OT 
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 There is no OT protocol which provides unconditional 

security for both parties. 

 

 Namely, information theoretic security which does not 

depend on any computation assumption (just like a one-

time-pad). 

 

 We show this by showing that there is no AND protocol 

which provides unconditional security for both parties  



 Suppose that there is an AND protocol (between P1 
and P2, with inputs a and b) with unconditional 
security. 
 Such a protocol could be constructed from an OT which 

has unconditional security.  

 

 Let T be a transcript of all messages sent in the 
protocol. 

 

 The parties use random inputs R1 and R2. 
 Given these inputs the transcript T is a deterministic 

function. 

 

18 

Impossibility of achieving OT with 

unconditional security 
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 In a certain execution with P1’s input a=0, the protocol has 
transcript  T and output  “0”. 
 If b=0, then P2 must not learn P1’s input.  

 Therefore  an R’1 s.t. if P1 has inputs a=1 and R’1, the protocol 
would have produced the same transcript T. 

 If b=1, then output is 0. Therefore there is no R’’1 s.t. the protocol 
has transcript T for a P1 input of a=1 (this is because the 
output of the protocol in this case is “1”). 

 

 P1 can therefore 
 search over all possible values for R1 and check if running them 

with input a=1 results in transcript T.  
 If there is such an R1 then it concludes that b=0. 
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Impossibility of achieving OT with 

unconditional security 
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