## Secure Computation

Lecture 1

Benny Pinkas

#### Administrative Details

- Grade
  - Based on
    - Homeworks 70%
    - ▶ A final take home project/large homework/exam 30%
    - Participation in class
- Email: <u>benny@pinkas.net</u>
- Web page: <a href="http://www.pinkas.net/courses/sc/index.html">http://www.pinkas.net/courses/sc/index.html</a>
- Goal: Learn how to perform a distributed computation while not revealing the inputs

#### Course Outline

- Course Outline
  - Cryptography is more than just encryption/signatures:
    - Dblivious transfer, secure computation.
    - Privacy preserving database operations: Private information retrieval (PIR), computing intersections, keyword search.
    - Search on encrypted data.

## Today Lecture: Oblivious Transfer

#### Web resources:

- Ronald Cramer's lecture notes, <a href="http://homepages.cwi.nl/~cramer/papers/CRAMER\_revised.ps">http://homepages.cwi.nl/~cramer/papers/CRAMER\_revised.ps</a>
- Boaz Barak's lecture
   <a href="http://www.cs.princeton.edu/courses/archive/fall05/cos43">http://www.cs.princeton.edu/courses/archive/fall05/cos43</a>
   3/lec22.pdf
- Naor, Pinkas, "Computationally Secure Oblivious Transfer" <a href="http://www.springerlink.com/index/10.1007/s00145-004-0102-6">http://www.springerlink.com/index/10.1007/s00145-004-0102-6</a>
- Efficient Secure Two-Party Protocols", Hazay and Lindell, 2010. Ch. 7.

## An application: computing "AND" privately

- ▶ Two players, PI and P2, have *binary* inputs *a* and *b*.
- ▶ They wish to compute *a* AND *b* without revealing any other information about their inputs.
- If PI's input is a=0, and he learns that (a AND b) = 0, he does not learn whether P2's input is 0 or 1.
- This is the first example of "secure computation" that we will learn
- Applications?
  - dating

#### 1-out-of-2 Oblivious Transfer

- ▶ Two players: sender and receiver.
  - Sender has two inputs,  $x_0, x_1$ .
  - Receiver has an input  $j \in \{0,1\}$ .
- Output:
  - Receiver learns  $x_i$  and nothing else.
  - Sender learns nothing about j.
- ▶ Depending on the OT variant, the inputs  $x_0,x_1$  could be strings or bits.
- Suppose that we have a construction of bit OT, how can we solve the AND computation problem?

## Computing "AND" Privately using OT

- ▶ P1 plays the sender's part, P2 is the receiver.
  - ▶ P1 sets the sender's inputs to be  $x_0=0$ ,  $x_1=a$ .
  - $\triangleright$  P2 sets the receiver's input to be j=b.
- They run an OT protocol, and P2 sends the final answer to P1.
- The output is  $(1-j)\cdot x_0 + j\cdot x_1 = (1-b)\cdot 0 + b\cdot a = a\cdot b$ .
- Privacy (hand-waving):
  - If b=0 then the result that P2 obtains in the OT protocol is always 0 and does not reveal anything about a.
  - If b=1 then the result obtained in the OT protocol is equal to a, but it is also equal to a b which is the legitimate output of P2.

### The Input Equality Problem





Is a=b?

Leak no other information!

#### The Millionaires Problem





Whose value is greater?

Leak no other information!

### Ideal Solution for the Secure Computation Problem





------

## What properties would we want of secure computation?

- Privacy: No party should learn anything more than its prescribed output (and anything derived from it).
- Correctness: The output of all parties is correct.
- Independence of inputs: Corrupted parties must choose their inputs independently of the honest parties' inputs. (Think about auctions.)
- ► Fairness: Corrupted parties receive their outputs if and only if the honest parties also receive their outputs. (Think about signing contracts.)

## Secure Computation (Informal) Definition

A protocol is secure if it emulates the ideal solution (the participants do not learn any information that they do not learn in the ideal model)

#### OR

For any adversary there is a comparable one working in the Ideal Model with *similar* output

## Security definitions

- We must <u>first</u> specify the power of the adversaries.
- Semi-honest vs. malicious adversaries:
  - Semi-honest (honest but curious) adversaries follow the protocol, but might try to learn additional information from the messages they receive during protocol execution.
  - Malicious adversaries might behave arbitrarily.
  - For instance, if the protocol requires PI to send to P2 a random number z, a malicious PI might define z by choosing a random y and defining z=Enc(y).
- Can now define what it means for an OT protocol to be secure. These definitions can be applied to both semihonest and malicious adversaries.

#### Security definitions: comparison to the ideal model

- Must state what it means to learn nothing but the output of the protocol.
  - Intuitively, a protocol is secure if whatever can be computed by a party participating in the protocol can be computed based on its input and output only.
- Comparison to the ideal model
  - Ideal implementation:
    - There is a trusted third party (TTP). It receives the inputs from the parties, computes the output, and sends it to the parties.
    - For OT: the TTP receives  $x_0, x_1$  from the sender, and j from the receiver. It sends  $x_i$  to the receiver.
    - For AND:TTP receives a,b from PI,P2, and returns a AND b.
  - Security comparison with the ideal model
    - Given a player's interaction with the TTP, it is possible to simulate the interaction it has in the protocol.

### Security of Computing "AND" Privately using OT

- Privacy against a corrupt P2: (against semi-honest adversaries)
  - ▶ Show here that P2 does not learn more than the "AND" result.
  - Must show that given the output of the "AND" function, it is possible to provide P2 with its "view" in the "AND" protocol (namely, the output of the OT).
  - Proof:We receive the output of the "AND" function and can simulate the input of the sender (PI) in the OT protocol. Therefore P2's output in the OT protocol is a function of the "AND" result alone.
    - ▶ Our input: a AND b, and P2's input b.
    - We set  $x_0=0, x_1=a$  AND b.
    - ▶ The output of the protocol is as in the original protocol.
  - How can we show a similar argument showing that P1 does not learn more than the "AND" result?

## Security of Computing "AND" Privately using OT

- Privacy against a corrupt PI: (against semi-honest adversaries)
  - We show that PI does not learn more than the "AND" result.
  - Proof: Recall that P2 is the receiver in the OT. After receiving the output of the OT it sends it to P1.
  - We receive the output of the "AND" function and construct the input of the receiver in the OT protocol. Therefore PI's output in the OT protocol is a function of the "AND" result.
    - ▶ Our input: a AND b, and PI's input a.
    - ▶ We set the receiver's input to be j=a AND b.
    - $\triangleright$  PI's input to the OT is, as in the original protocol, (0,a).
    - If (a AND b) is 0 then the output of the protocol is 0; if (a AND b) is I the output of the protocol is a (and in this case it holds that a=I). Therefore the output is as in the original protocol.

#### Constructions of OT

- There is no OT protocol which provides unconditional security for both parties.
- Namely, information theoretic security which does not depend on any computation assumption (just like a one-time-pad).
- We show this by showing that there is no AND protocol which provides unconditional security for both parties

# Impossibility of achieving OT with unconditional security

- Suppose that there is an AND protocol (between P<sub>1</sub> and P<sub>2</sub>, with inputs a and b) with <u>unconditional</u> security.
  - Such a protocol could be constructed from an OT which has unconditional security.
- Let T be a transcript of all messages sent in the protocol.
- The parties use random inputs R₁ and R₂.
  - Given these inputs the transcript T is a deterministic function.

# Impossibility of achieving OT with unconditional security

- In a certain execution with P<sub>1</sub>'s input a=0, the protocol has transcript T and output "0".
  - If b=0, then  $P_2$  must not learn  $P_1$ 's input.
  - ► Therefore  $\exists$  an R'<sub>1</sub> s.t. if P<sub>1</sub> has inputs a=1 and R'<sub>1</sub>, the protocol would have produced the same transcript T.
  - If b=1, then output is 0. Therefore there is no R"₁ s.t. the protocol has transcript T for a P₁ input of a=1 (this is because the output of the protocol in this case is "1").

#### ▶ P₁ can therefore

- search over all possible values for R<sub>1</sub> and check if running them with input a=1 results in transcript T.
- If there is such an  $R_1$  then it concludes that b=0.