Advanced Topics in Cryptography

Lecture 10
Secure Multi-Party Computation

Benny Pinkas

page 1 May 27, 2014

Secure Computation in the Multi-
Party Setting

page 2 May 27, 2014

The setting

» Parties P,,...,P,

» Inputs X1,.-.,X, (bits, but can be easily generalized)
» Outputs vyq,...,Y,

» The functionality is described as a Boolean circuit.

WIlog, uses only XOR (+) and AND gates
NOT(X) is computed as a x+1

Wires are ordered so that if wire k is a function of wires i
and j, then i<k and j<k.

May 27, 2014

The GMW protocol for semi-honest
setting

» The protocol.
Each party shares its input bit
Scan the circuit gate by gate
Input values of gate are shared by the parties

Run a protocol computing a sharing of the
output value of the gate

Repeat
Publish outputs

4 May 27, 2014

Protocol for semi-honest setting

» The protocol:
Each party shares its input bit
The sharing procedure:
P; has input bit x.
It chooses random bits r;; for all i#j.
Sends bit r;; to P

Sets its own share to r;; = x; + (24 1;;) mod 2
Therefore 3,_; | r;; =X mod 2.

Now every P; has n shares, one for each input x; of
each P,.

5 May 27, 2014

Evaluating the circuit

» Scan circuit by the order of wires
» Wire c Is a function of wires a,b

2

a| |b

» P, has shares a,, b,. Must get share of c,.

» Addition gate:
» P, computes c;=a,+b, mod 2.

» Indeed, c = a+b (mod 2) =
(a,+...+a,) + (b,+...+b) = (a;+by)+...+(a,+b,) =
C,+...+C,

6 May 27, 2014

Evaluating multiplication gates

»c=ab=(at+...+a,) - (by+...+b) = 2., ab; + 2
ab; =2, ,ab+ 24, (@b + ab)

» P;will receive a share of ab+2; ., (ab; + ab;)

» Computing ab. by P, Is easy

» What about ajb; + ajb;?
» P;and P;run the following protocol for every I<].

7 May 27, 2014

Evaluating multiplication gates

» Input: P; has a;,b;, P;has a;b.
» P;outputs ajb+ab;+s;;. P; outputs s; ;.
» P

Chooses a random s;;

Computes the four possible outcomes of ab+ab+s;;,
depending on the four options for P;'s inputs.

Sets these values to be its input to a 1-out-of-4 OT

» P, Is the receiver, with input 2a,+Db,.

8 May 27, 2014

Recovering the output bits

» The protocol computes shares of the output wires.

» Each party sends its share of an output wire to the
party P; that should learn that output.

» P,can then sum the shares, obtain the value and
output It.

9 May 27, 2014

Proof of Security

» Recall definition of security for semi-honest setting:

Simulation - Given input and output, can generate the
adversary’s view of a protocol execution.

» Suppose that adversary controls the set J of all
parties but P..

» The simulator is given (x;,y;) for all P; € J.

10 May 27, 2014

The simulator

» Shares of input wires: VjeJ choose
a random share r;; to be sent from P; to P;,
and a random share r;; to be sent from P; to P,.
» Shares of multiplication gate wires:

V|<I, choose a random bit as the value learned in the 1-
out-of-4 OT.

VJ>l, choose a random s;;, and set the four inputs of the
OT with P; accordingly.

» Output wire y; of JeJ: set the message received from P,
as the XOR of y; and the shares of that wire held by P;eJ.

11 May 27, 2014

Security proof

» The output of the simulation is distributed identically to

the view in the real protocol
Certainly true for the random shares r,
P..

OT for j<i: output is random, as in the real protocol.

OT for j<i: input to the OT defined as in the real protocol.

Output wires: message from P, distributed as in the real
protocol.

i fji sent from and to

» QED

12 May 27, 2014

Performance

» Must run an OT for every multiplication gate
Namely, public key operations per multiplication gate

Need a communication round between all parties per every
multiplication gate

Can process together a set of multiplication gates if all their
Input wires are already shared

Therefore number of rounds is O(d), where d is the depth of
the circuit (counting only multiplication gates).

13 May 27, 2014

The BMR protocol

» Beaver-Micali-Rogaway
» A multi-party version of Yao’s protocol

» Works in O(1) communication rounds, regardless of
the depth of the Boolean circuit.

D. Beaver, S. Micali and P. Rogaway, “The round
complexity of secure protocols”, 1990.

A. Ben-David, N. Nisan and B. Pinkas, “FairplayMP — A
System for Secure Multi-Party Computation”, 2010.

14 May 27, 2014

The BMR protocol

» Two random seeds (garbled values) are set for every
wire of the Boolean circuit:

Each seed is a concatenation of seeds generated by all
players and secretly shared among them.

» The parties securely compute together a 4x1 table
for every gate (in parallel):

Given 0/1 seeds of the input wires, the table reveals the
seed of the resulting value of the output wire.

15 May 27, 2014

The BMR protocol

» The parties securely compute together a 4x1 table
for every gate (in parallel):

This Is essentially a secure computation of the table

But all tables can be computed in parallel. Therefore O(1)
rounds.

This is the main bottleneck of the BMR protocol.

» Given the tables, and seeds of the input values, it is
easy to compute the circuit output.

16 May 27, 2014

The malicious case

» What can go wrong with malicious behavior?

Using shares other than those defined by the protocaol,
using arbitrary inputs to the OT protocol and sending
wrong shares of output wires...

» We will show a compiler which forces the parties to

operate as in the semi-honest model. (For both GMW
and BMR.)

» The basic idea:

In every step, each P; proves in zero knowledge that its
messages were computed according to the protocol

17 May 27, 2014

Zero knowledge proofs
(we studied this already)

» Prover P, verifier V, language L

» P proves that xeL without revealing anything

Completeness: V always accepts when xelL, and an
honest P and V interact.

Soundness: V accepts with negligible probability when
xgL, for any P~

Computational soundness: only holds when P* is polynomial-
time

» Zero-knowledge:

There exists a simulator S such that S(x) is
iIndistinguishable from a real proof execution.

18 May 27, 2014

A warm-up

» Assume that each party P; runs a deterministic
program IT. The compiler is the following:
Each P, commits to its input x; by sending Ci(r;,x)), where r; IS
a random string used for the commitment.

Let T:5 be the transcript of P, at step s, I.e. all messages
received and sent by P; until that step.

Define the language L, = {T:° s.t. 3x,I; so that all messages
sent by P, until step s are the output of I'1; applied to x;,r, and
to all messages received by P; up to that step}

When sending a message in step s prove in zero-
knowledge that TS € L,.

19 May 27, 2014

Handling randomized protocols

» The previous construction assumes that P;’'s program,
[T;, Is deterministic.

» This is not true in the semi-honest protocol we have
seen.

20

In particular, the choice of shares, and the sender’s input
to the OT, must be random.

The compiler must ensure that P, chooses its random coins
Independently of the messages received from other
parties.

This is not ensured by the previous construction.

May 27, 2014

The compiler

» We will describe the basic issues of a protocol
secure against any number of malicious parties, but
with no aborts allowed.

» Communication model:

21

Messages are published on a bulletin board, and can be
read by all parties.

This implements a broadcast, ensuring that all parties
receive the same message.

Broadcast can be easily implemented if a public key
Infrastructure exists.

We assume that a PKI does exist.

May 27, 2014

The compiler

» Input commitment phase:
Each party commits to its input.
» Coin generation phase:

The parties generate random tapes for each other (this
ensures that the randomness is independent of the
messages.)

Initial idea: random tape of P; is defined as s, ®s, @...®
Sni» Where s;;is chosen by P;.

But this lets P,, control the outcome ®
» Protocol emulation phase:

Run the protocol while proving that the operations of the
parties comply with their inputs and random tapes.

22 May 27, 2014

The protocol:
Input commitment phase

» The required functionality for P, Is
(x, 1. 1K) —(r,C.(x),...C.(X)), and similarly for each P..

(This is required in order to choose the randomness, but we
must ensure that P, actually knows r, and that r was chosen
at random.)

» It Is not sufficient to ask P, to just broadcast a
commitment of its input

This does not ensure that this iIs a random commitment for
which P, knows a decommitment.

» The protocol is more complex...

» It is useful to first design tools that can help in
constructing the compiler.

23 May 27, 2014

Tool 1: image transmission

» The required functionality is (a,1@,...11a)—(A,f(a),
...,f(a)) (all receive the same function of a)
» Protocol

P, broadcasts an encryption of f(a) (f() is a public function)

For j=2...n, P, proves to P; a zero-knowledge proof of
knowledge of a value a corresponding to f(a).

If P; rejects, it broadcasts the coins it used in the proof.
» Output: Forj=2...n, if P, sees a justifiable rejection it aborts,

otherwise it outputs f(a).

Agreement to whether P, misbehaved is reduced to the decision
on whether some verifier has justifiably rejected the proof.

24 May 27, 2014

Tool 1: image transmission

» The required functionality is (a,1@,...11a)—(A,f(a),
...,f(a))

» Agreement as to whether P, misbehaved is reduced
to the decision on whether some verifier has
justifiably rejected the proof.

» If P, Is honest, then no malicious party can claim that
it cheated.

25 May 27, 2014

Tool 2: authenticated computation

» The required functionality Is
(a,b,,...,0,)—(A\V,, ...,v,),
where vi=f(a) If b=h(a) and v,=A otherwise.
» Namely, P; learns a function f(a) of a, if it already has h(a)
(e.g., If h(a) is a commitment to a and P; already has it)

» Protocol:

Use the image transmission tool to broadcast (f(a),h(a)) to
all Pj,]=2...n.

P, outputs f(a) if b=h(a), and A otherwise.

26 May 27, 2014

Tool 3: multi-party augmented coin-tossing

» The required functionality Is
(1n,,...,1")—(r,g(r),..., g(r)).

» Typically we will use it for computing
(1",,...,1")—((r,s), CL(r),..., C(r)), where r is random.

» The challenge: Ensuring that P,’s output is random.
We cannot trust P, to choose a random output.

27 May 27, 2014

Tool 3: multi-party augmented coin-tossing

» (11,,...,1M—((r,S), C.(r),..., C.(1)).
Toss and commit: Vi, P,chooses r,,s; and uses the image
transmission tool to send ¢=Cg(r)) to all P;.

Open commits: Vi=2, P;uses the authenticated computation

tool to send s,,r; to all parties that already have c..

If P, obtains r; agreeing with ¢, it sets rj=r; (also, r}=r,).
Otherwise it aborts.

If P, did not abort, it sets r=@_, I, sends C(r) to all other
parties (to be used for the main protocol), and proves that
C(r) was constructed correctly.

(details in the next slide)

28 May 27, 2014

Tool 3: multi-party augmented coin-tossing
(contd.)

P, sends C(r) to all other parties, and proves that it was
constructed correctly.

Namely, P, runs the authenticated computation
functionality

P, chooses a random s. Its input to the protocol is
(r1,81,8,Dj=>. .l

P’sinputis c;, ©-, I

If c,=Cg,(r;) and ©_, 1} = D, .Ii*, then P, outputs
Co(Bi=1. 1r) = C4(r). Otherwise it aborts.

P, outputs r.

29 May 27, 2014

The main protocol:
Input commitment phase

» Protocol:

30

P, chooses random r’, and uses the image transmission
functionality to send c'=C,,(x;) to all parties.

Run augmented coin-tossing protocol s.t. P, learns (r;,r")
and others learn c’=C..(r;).

Run authenticated computation where P, has input

(xi,r,,r’,r) and others input (c’,c”), and others learn C,(x) if
(c’,c”) are the required functions of P;’s input.

May 27, 2014

The main protocol:
coin generation phase

» Each P, runs the augmented coin tossing protocol
where

P. learns (r',s")
The other parties learn C(r).

31 May 27, 2014

The main protocol:
Protocol emulation phase

» The parties use the authenticated computation
functionality

(@,b,,...,0,)—(AV,, ...,v,), where vi=f(a) if b=h(a) and vj=A
otherwise.
» Suppose that it is P;’s turn to send a message

Its input is (x,I',T,), as well as the coins used for
commitments, where T, Is the sequence of messages
exchanged so far.

Every other party has input (C(x;),C(r"),T)

f(x,r',T,) is the message P; must send

It is accepted if (C(x;),C(r;),T) agree with x;,r;, T and the
program that is run

32 May 27, 2014

Summary

» Can compute any functionality securely in presence
of semi-honest adversaries

» Protocol is efficient enough for use, for circuits that
are not too large

» The full proof is in Goldreich’s book.

33 May 27, 2014

