
May 27, 2014 page 1

Advanced Topics in Cryptography

Lecture 10

Secure Multi-Party Computation

Benny Pinkas

page 2

Secure Computation in the Multi-

Party Setting

May 27, 2014

 Parties P1,…,Pn

 Inputs x1,…,xn (bits, but can be easily generalized)

 Outputs y1,…,yn

 The functionality is described as a Boolean circuit.

 Wlog, uses only XOR (+) and AND gates

 NOT(x) is computed as a x+1

 Wires are ordered so that if wire k is a function of wires i

and j, then i<k and j<k.

3

The setting

May 27, 2014

 The protocol:

 Each party shares its input bit

 Scan the circuit gate by gate

 Input values of gate are shared by the parties

 Run a protocol computing a sharing of the

output value of the gate

 Repeat

 Publish outputs

4

The GMW protocol for semi-honest

setting

May 27, 2014

 The protocol:

 Each party shares its input bit

 The sharing procedure:

 Pi has input bit xi

 It chooses random bits ri,j for all i≠j.

 Sends bit ri,j to Pj.

 Sets its own share to ri,i = xi + (Σj≠i ri,j) mod 2

 Therefore Σj=1…n ri,j = xi mod 2.

 Now every Pj has n shares, one for each input xi of

each Pi.

5

Protocol for semi-honest setting

May 27, 2014

 Scan circuit by the order of wires

 Wire c is a function of wires a,b

6

Evaluating the circuit

c

a b
 Pi has shares ai, bi. Must get share of ci .

 Addition gate:

 Pi computes ci=ai+bi mod 2.

 Indeed, c = a+b (mod 2) =

(a1+…+an) + (b1+…+bn) = (a1+b1)+…+(an+bn) =

c1+…+cn

May 27, 2014

 c = a·b = (a1+…+an) · (b1+…+bn) = Σi=1…n aibi + Σi≠j

aibj = Σi=1…n aibi + Σ1≤i<j≤n (aibj + ajbi)

 Pi will receive a share of aibi+Σi<j≤n (aibj + ajbi)

 Computing aibi by Pi is easy

 What about aibj + ajbi?

 Pi and Pj run the following protocol for every i<j.

7

Evaluating multiplication gates

May 27, 2014

 Input: Pi has ai,bi, Pj has aj,bj.

 Pi outputs aibj+ajbi+si,j. Pj outputs si,j.

 Pj:
 Chooses a random si,j

 Computes the four possible outcomes of aibj+ajbi+si,j,

depending on the four options for Pi’s inputs.

 Sets these values to be its input to a 1-out-of-4 OT

 Pi is the receiver, with input 2ai+bi.

8

Evaluating multiplication gates

May 27, 2014

 The protocol computes shares of the output wires.

 Each party sends its share of an output wire to the

party Pi that should learn that output.

 Pi can then sum the shares, obtain the value and

output it.

9

Recovering the output bits

May 27, 2014

 Recall definition of security for semi-honest setting:

 Simulation - Given input and output, can generate the

adversary’s view of a protocol execution.

 Suppose that adversary controls the set J of all

parties but Pi.

 The simulator is given (xj,yj) for all Pj  J.

10

Proof of Security

May 27, 2014

 Shares of input wires: jJ choose

 a random share rj,i to be sent from Pj to Pi,

 and a random share ri,j to be sent from Pi to Pj.

 Shares of multiplication gate wires:

 j<i, choose a random bit as the value learned in the 1-

out-of-4 OT.

 j>i, choose a random si,j, and set the four inputs of the

OT with Pi accordingly.

 Output wire yj of j∈J: set the message received from Pi

as the XOR of yj and the shares of that wire held by PjJ.

11

The simulator

May 27, 2014

 The output of the simulation is distributed identically to

the view in the real protocol

 Certainly true for the random shares ri,j, rj,i sent from and to

Pi.

 OT for j<i: output is random, as in the real protocol.

 OT for j<i: input to the OT defined as in the real protocol.

 Output wires: message from Pi distributed as in the real

protocol.

 QED

12

Security proof

May 27, 2014

 Must run an OT for every multiplication gate

 Namely, public key operations per multiplication gate

 Need a communication round between all parties per every

multiplication gate

 Can process together a set of multiplication gates if all their

input wires are already shared

 Therefore number of rounds is O(d), where d is the depth of

the circuit (counting only multiplication gates).

13

Performance

May 27, 2014

 Beaver-Micali-Rogaway

 A multi-party version of Yao’s protocol

 Works in O(1) communication rounds, regardless of

the depth of the Boolean circuit.

 D. Beaver, S. Micali and P. Rogaway, “The round

complexity of secure protocols”, 1990.

 A. Ben-David, N. Nisan and B. Pinkas, “FairplayMP – A

System for Secure Multi-Party Computation”, 2010.

14

The BMR protocol

May 27, 2014

 Two random seeds (garbled values) are set for every

wire of the Boolean circuit:

 Each seed is a concatenation of seeds generated by all

players and secretly shared among them.

 The parties securely compute together a 4x1 table

for every gate (in parallel):

 Given 0/1 seeds of the input wires, the table reveals the

seed of the resulting value of the output wire.

15

The BMR protocol

May 27, 2014

 The parties securely compute together a 4x1 table

for every gate (in parallel):

 This is essentially a secure computation of the table

 But all tables can be computed in parallel. Therefore O(1)

rounds.

 This is the main bottleneck of the BMR protocol.

 Given the tables, and seeds of the input values, it is

easy to compute the circuit output.

16

The BMR protocol

May 27, 2014

 What can go wrong with malicious behavior?

 Using shares other than those defined by the protocol,

using arbitrary inputs to the OT protocol and sending

wrong shares of output wires…

 We will show a compiler which forces the parties to

operate as in the semi-honest model. (For both GMW

and BMR.)

 The basic idea:

 In every step, each Pi proves in zero knowledge that its

messages were computed according to the protocol

17

The malicious case

May 27, 2014

 Prover P, verifier V, language L

 P proves that xL without revealing anything

 Completeness: V always accepts when xL, and an

honest P and V interact.

 Soundness: V accepts with negligible probability when

xL, for any P*.

 Computational soundness: only holds when P* is polynomial-

time

 Zero-knowledge:

 There exists a simulator S such that S(x) is

indistinguishable from a real proof execution.

18

Zero knowledge proofs
(we studied this already)

May 27, 2014

 Assume that each party Pi runs a deterministic

program i. The compiler is the following:

 Each Pi commits to its input xi by sending Ci(ri,xi), where ri is

a random string used for the commitment.

 Let Ti
s be the transcript of Pi at step s, i.e. all messages

received and sent by Pi until that step.

 Define the language Li = {Ti
s s.t. xi,ri so that all messages

sent by Pi until step s are the output of i applied to xi,ri and

to all messages received by Pi up to that step}

 When sending a message in step s prove in zero-

knowledge that Ti
s  Li.

19

A warm-up

May 27, 2014

 The previous construction assumes that Pi’s program,

i, is deterministic.

 This is not true in the semi-honest protocol we have

seen.

 In particular, the choice of shares, and the sender’s input

to the OT, must be random.

 The compiler must ensure that Pi chooses its random coins

independently of the messages received from other

parties.

 This is not ensured by the previous construction.

20

Handling randomized protocols

May 27, 2014

 We will describe the basic issues of a protocol

secure against any number of malicious parties, but

with no aborts allowed.

 Communication model:

 Messages are published on a bulletin board, and can be

read by all parties.

 This implements a broadcast, ensuring that all parties

receive the same message.

 Broadcast can be easily implemented if a public key

infrastructure exists.

 We assume that a PKI does exist.

21

The compiler

May 27, 2014

 Input commitment phase:

 Each party commits to its input.

 Coin generation phase:

 The parties generate random tapes for each other (this

ensures that the randomness is independent of the

messages.)

 Initial idea: random tape of Pi is defined as s1,is2,i…

sn,i, where sj,i is chosen by Pj.

 But this lets Pn control the outcome 

 Protocol emulation phase:

 Run the protocol while proving that the operations of the

parties comply with their inputs and random tapes.

22

The compiler

May 27, 2014

 The required functionality for P1 is

(x,1|x|,…1|x|)→(r,Cr(x),…Cr(x)), and similarly for each Pi.

 (This is required in order to choose the randomness, but we

must ensure that P1 actually knows r, and that r was chosen

at random.)

 It is not sufficient to ask P1 to just broadcast a

commitment of its input

 This does not ensure that this is a random commitment for

which Pi knows a decommitment.

 The protocol is more complex…

 It is useful to first design tools that can help in

constructing the compiler.

23

The protocol:

Input commitment phase

May 27, 2014

 The required functionality is (a,1|a|,…1|a|)→(λ,f(a),

…,f(a)) (all receive the same function of a)

 Protocol

 P1 broadcasts an encryption of f(a) (f() is a public function)

 For j=2…n, P1 proves to Pj a zero-knowledge proof of

knowledge of a value a corresponding to f(a).

 If Pj rejects, it broadcasts the coins it used in the proof.

 Output: For j=2…n, if Pj sees a justifiable rejection it aborts,

otherwise it outputs f(a).

 Agreement to whether P1 misbehaved is reduced to the decision

on whether some verifier has justifiably rejected the proof.

24

Tool 1: image transmission

May 27, 2014

 The required functionality is (a,1|a|,…1|a|)→(λ,f(a),

…,f(a))

 Agreement as to whether P1 misbehaved is reduced

to the decision on whether some verifier has

justifiably rejected the proof.

 If P1 is honest, then no malicious party can claim that

it cheated.

25

Tool 1: image transmission

May 27, 2014

 The required functionality is

 (a,b2,…,bn)→(λ,v2, …,vn),

 where vj=f(a) if bj=h(a) and vj=λ otherwise.

 Namely, Pj learns a function f(a) of a, if it already has h(a)

(e.g., if h(a) is a commitment to a and Pj already has it)

 Protocol:

 Use the image transmission tool to broadcast (f(a),h(a)) to

all Pj, j=2…n.

 Pj outputs f(a) if bj=h(a), and λ otherwise.

26

Tool 2: authenticated computation

May 27, 2014

 The required functionality is

 (1n,,…,1n)→(r,g(r),…, g(r)).

 Typically we will use it for computing

(1n,,…,1n)→((r,s), Cs(r),…, Cs(r)), where r is random.

 The challenge: Ensuring that P1’s output is random.

We cannot trust P1 to choose a random output.

27

Tool 3: multi-party augmented coin-tossing

May 27, 2014

 (1n,,…,1n)→((r,s), Cs(r),…, Cs(r)).

 Toss and commit: ∀i, Pi chooses ri,si and uses the image

transmission tool to send ci=CSi(ri) to all Pj.

 Open commits: ∀i≥2, Pi uses the authenticated computation

tool to send si,ri to all parties that already have ci.

 If Pj obtains ri agreeing with ci, it sets ri
j=ri (also, rj

j=rj).

 Otherwise it aborts.

 If P1 did not abort, it sets r=⊕i=1…nri , sends Cs(r) to all other

parties (to be used for the main protocol), and proves that

Cs(r) was constructed correctly.

 (details in the next slide)

28

Tool 3: multi-party augmented coin-tossing

May 27, 2014

 P1 sends Cs(r) to all other parties, and proves that it was

constructed correctly.

 Namely, P1 runs the authenticated computation

functionality

 P1 chooses a random s. Its input to the protocol is

(r1,s1,s,⊕j=2…nri
1)

 Pj’s input is c1, ⊕j=2…nri
j
.

 If c1=CS1(r1) and ⊕j=2…nri
j = ⊕j=2…nri

1, then Pj outputs

Cs(⊕j=1…nri) = Cs(r). Otherwise it aborts.

 P1 outputs r.

29

Tool 3: multi-party augmented coin-tossing

(contd.)

May 27, 2014

 Protocol:

 Pi chooses random r’i and uses the image transmission

functionality to send c’=Cr’i(xi) to all parties.

 Run augmented coin-tossing protocol s.t. Pi learns (ri,r”i)

and others learn c”=Cr”i(ri).

 Run authenticated computation where Pi has input

(xi,ri,r’i,r”i) and others input (c’,c”), and others learn Cri(xi) if

(c’,c”) are the required functions of Pi’s input.

30

The main protocol:

Input commitment phase

May 27, 2014

 Each Pi runs the augmented coin tossing protocol

where

 Pi learns (ri,si)

 The other parties learn Csi(r
i).

31

The main protocol:

coin generation phase

May 27, 2014

 The parties use the authenticated computation

functionality

 (a,b2,…,bn)→(λ,v2, …,vn), where vj=f(a) if bj=h(a) and vj=λ

otherwise.

 Suppose that it is Pi’s turn to send a message

 Its input is (xi,r
i,Tt), as well as the coins used for

commitments, where Tt is the sequence of messages

exchanged so far.

 Every other party has input (C(xi),C(ri),Tt)

 f(xi,r
i,Tt) is the message Pi must send

 It is accepted if (C(xi),C(ri),T) agree with xi,ri,T and the

program that is run

32

The main protocol:

Protocol emulation phase

May 27, 2014

 Can compute any functionality securely in presence

of semi-honest adversaries

 Protocol is efficient enough for use, for circuits that

are not too large

 The full proof is in Goldreich’s book.

33

Summary

May 27, 2014

