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 Parties    P1,…,Pn 

 Inputs     x1,…,xn   (bits, but can be easily generalized) 

 Outputs  y1,…,yn 

 

 The functionality is described as a Boolean circuit.  

 Wlog, uses only XOR (+) and AND gates 

 NOT(x) is computed as a x+1 

 Wires are ordered so that if wire k is a function of wires i 

and j, then i<k and j<k. 
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The setting 

May 27, 2014 



 The protocol: 

 Each party shares its input bit 

 Scan the circuit gate by gate 

 Input values of gate are shared by the parties 

 Run a protocol computing a sharing of the 

output value of the gate 

 Repeat 

 Publish outputs 
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The GMW protocol for semi-honest 

setting 
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 The protocol: 

 Each party shares its input bit 

 The sharing procedure: 

 Pi has input bit xi 

 It chooses random bits ri,j for all i≠j.  

 Sends bit ri,j to Pj. 

 Sets its own share to ri,i = xi + (Σj≠i ri,j ) mod 2 

 Therefore Σj=1…n ri,j = xi mod 2. 

 

 Now every Pj has n shares, one for each input xi of 

each Pi. 
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Protocol for semi-honest setting 
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 Scan circuit by the order of wires 

 Wire c is a function of wires a,b 
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Evaluating the circuit 

c 

a b 
 Pi has shares ai, bi. Must get share of ci . 

 

 Addition gate: 

 Pi computes ci=ai+bi  mod 2. 

 

 Indeed, c = a+b (mod 2) =                               

(a1+…+an) + (b1+…+bn) = (a1+b1)+…+(an+bn) =                           

c1+…+cn 
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 c = a·b = (a1+…+an) · (b1+…+bn) = Σi=1…n aibi + Σi≠j 

aibj = Σi=1…n aibi + Σ1≤i<j≤n (aibj + ajbi) 

 

 Pi will receive a share of aibi+Σi<j≤n (aibj + ajbi) 

 

 Computing aibi by Pi is easy 

 What about aibj + ajbi? 

 Pi and Pj run the following protocol for every i<j. 
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Evaluating multiplication gates 
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 Input: Pi has ai,bi,  Pj has aj,bj. 

 Pi outputs aibj+ajbi+si,j. Pj outputs si,j. 

 Pj: 
 Chooses a random si,j 

 Computes the four possible outcomes of aibj+ajbi+si,j, 

depending on the four options for Pi’s inputs. 

 Sets these values to be its input to a 1-out-of-4 OT 

 

 Pi is the receiver, with input 2ai+bi. 
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Evaluating multiplication gates 

May 27, 2014 



 The protocol computes shares of the output wires. 

 

 Each party sends its share of an output wire to the 

party Pi that should learn that output. 

 

 Pi can then sum the shares, obtain the value and 

output it. 
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Recovering the output bits 
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 Recall definition of security for semi-honest setting: 

 Simulation - Given input and output, can generate the 

adversary’s view of a protocol execution. 

 

 Suppose that adversary controls the set J of all 

parties but Pi. 

 The simulator is given (xj,yj) for all Pj  J. 
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Proof of Security 
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 Shares of input wires: jJ choose 

 a random share rj,i to be sent from Pj to Pi, 

 and a random share ri,j to be sent from Pi to Pj. 

 Shares of multiplication gate wires: 

 j<i, choose a random bit as the value learned in the 1-

out-of-4 OT. 

 j>i, choose a random si,j, and set the four inputs of the 

OT with Pi accordingly. 

 

 Output wire yj of j∈J: set the message received from Pi 

as the XOR of yj and the shares of that wire held by PjJ.  

 

11 

The simulator 
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 The output of the simulation is distributed identically to 

the view in the real protocol 

 Certainly true for the random shares ri,j, rj,i sent from and to 

Pi. 

 OT for j<i: output is random, as in the real protocol. 

 OT for j<i: input to the OT defined as in the real protocol. 

 Output wires: message from Pi distributed as in the real 

protocol. 

 

 QED 
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Security proof 
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 Must run an OT for every multiplication gate 

 Namely, public key operations per multiplication gate 

 Need a communication round between all parties per every 

multiplication gate 

 

 Can process together a set of multiplication gates if all their 

input wires are already shared 

 Therefore number of rounds is O(d), where d is the depth of 

the circuit (counting only multiplication gates). 
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Performance 
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 Beaver-Micali-Rogaway 

 A multi-party version of Yao’s protocol 

 Works in O(1) communication rounds, regardless of 

the depth of the Boolean circuit. 

 

 D. Beaver, S. Micali and P. Rogaway, “The round 

complexity of secure protocols”, 1990. 

 A. Ben-David, N. Nisan and B. Pinkas, “FairplayMP – A 

System for Secure Multi-Party Computation”, 2010. 
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The BMR protocol 
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 Two random seeds (garbled values) are set for every 

wire of the Boolean circuit: 

 Each seed is a concatenation of seeds generated by all 

players and secretly shared among them. 

 The parties securely compute together a 4x1 table 

for every gate (in parallel):  

 Given 0/1 seeds of the input wires, the table reveals the 

seed of the resulting value of the output wire.  
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The BMR protocol 
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 The parties securely compute together a 4x1 table 

for every gate (in parallel):  

 This is essentially a secure computation of the table 

 But all tables can be computed in parallel. Therefore O(1) 

rounds.  

 This is the main bottleneck of the BMR protocol. 

 

 Given the tables, and seeds of  the input values, it is 

easy to compute the circuit output. 
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The BMR protocol 

May 27, 2014 



 What can go wrong with malicious behavior? 

 Using shares other than those defined by the protocol, 

using arbitrary inputs to the OT protocol and sending 

wrong shares of output wires… 

 We will show a compiler which forces the parties to 

operate as in the semi-honest model. (For both GMW 

and BMR.) 

 The basic idea: 

 In every step, each Pi proves in zero knowledge that its 

messages were computed according to the protocol 
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The malicious case 
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 Prover P, verifier V, language L 

 P proves that xL without revealing anything 

 Completeness: V always accepts when xL, and an 

honest P and V interact. 

 Soundness: V accepts with negligible probability when 

xL, for any P*. 

 Computational soundness: only holds when P* is polynomial-

time 

 Zero-knowledge: 

 There exists a simulator S such that S(x) is 

indistinguishable from a real proof execution. 
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Zero knowledge proofs 
(we studied this already) 
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 Assume that each party Pi runs a deterministic 

program i. The compiler is the following:  

 Each Pi commits to its input xi by sending Ci(ri,xi), where ri is 

a random string used for the commitment. 

 Let Ti
s be the transcript of Pi at step s, i.e. all messages 

received and sent by Pi until that step. 

 Define the language Li = {Ti
s s.t. xi,ri so that all messages 

sent by Pi until step s are the output of i applied to xi,ri and 

to all messages received by Pi up to that step} 

 When sending a message in step s prove in zero-

knowledge that Ti
s  Li. 
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A warm-up 
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 The previous construction assumes that Pi’s program, 

i, is deterministic. 

 

 This is not true in the semi-honest protocol we have 

seen.  

 In particular, the choice of shares, and the sender’s input 

to the OT, must be random. 

 The compiler must ensure that Pi chooses its random coins 

independently of the messages received from other 

parties. 

 This is not ensured by the previous construction.   
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Handling randomized protocols  
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 We will describe the basic issues of a protocol 

secure against any number of malicious parties, but 

with no aborts allowed. 

 Communication model: 

 Messages are published on a bulletin board, and can be 

read by all parties. 

 This implements a broadcast, ensuring that all parties 

receive the same message. 

 Broadcast can be easily implemented if a public key 

infrastructure exists. 

 We assume that a PKI does exist. 
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The compiler  
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 Input commitment phase: 

 Each party commits to its input. 

 Coin generation phase: 

 The parties generate random tapes for each other (this 

ensures that the randomness is independent of the 

messages.) 

 Initial idea: random tape of Pi is defined as s1,is2,i… 

sn,i, where sj,i is chosen by Pj.  

 But this lets Pn control the outcome  

 Protocol emulation phase: 

 Run the protocol while proving that the operations of the 

parties comply with their inputs and random tapes. 
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The compiler 
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 The required functionality for P1 is 

(x,1|x|,…1|x|)→(r,Cr(x),…Cr(x)), and similarly for each Pi. 

 (This is required in order to choose the randomness, but we 

must ensure that P1 actually knows r, and that r was chosen 

at random.) 

 It is not sufficient to ask P1 to just broadcast a 

commitment of its input 

 This does not ensure that this is a random commitment for 

which Pi knows a decommitment. 

 The protocol is more complex… 

 It is useful to first design tools that can help in 

constructing the compiler. 

23 

The protocol: 

Input commitment phase 
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 The required functionality is  (a,1|a|,…1|a|)→(λ,f(a), 

…,f(a)) (all receive the same function of a) 

 Protocol 

 P1 broadcasts an encryption of f(a) (f() is a public function) 

 For j=2…n, P1 proves to Pj a zero-knowledge proof of 

knowledge of a value a corresponding to f(a). 

 If Pj rejects, it broadcasts the coins it used in the proof. 

 Output: For j=2…n, if Pj sees a justifiable rejection it aborts,                            

otherwise it outputs f(a). 

 Agreement to whether P1 misbehaved is reduced to the decision 

on whether some verifier has justifiably rejected the proof. 
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Tool 1: image transmission 
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 The required functionality is  (a,1|a|,…1|a|)→(λ,f(a), 

…,f(a)) 

 

 Agreement as to whether P1 misbehaved is reduced 

to the decision on whether some verifier has 

justifiably rejected the proof. 

 

 If P1 is honest, then no malicious party can claim that 

it cheated. 
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Tool 1: image transmission 

May 27, 2014 



 The required functionality is                 

 (a,b2,…,bn)→(λ,v2, …,vn),   

 where vj=f(a) if bj=h(a)  and vj=λ otherwise.  

 Namely, Pj learns a function f(a) of a, if it already has h(a) 

(e.g., if h(a) is a commitment to a and Pj already has it) 

 

 Protocol: 

 Use the image transmission tool to broadcast (f(a),h(a)) to 

all Pj, j=2…n. 

 Pj outputs f(a) if bj=h(a), and λ otherwise. 
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Tool 2: authenticated computation 
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 The required functionality is    

  (1n,,…,1n)→(r,g(r),…, g(r)). 

 

 Typically we will use it for computing                                  

(1n,,…,1n)→((r,s), Cs(r),…, Cs(r)), where r is random. 

 

 The challenge: Ensuring that P1’s output is random. 

We cannot trust P1 to choose a random output. 
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Tool 3: multi-party augmented coin-tossing 
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 (1n,,…,1n)→((r,s), Cs(r),…, Cs(r)). 

 Toss and commit: ∀i, Pi chooses ri,si and uses the image 

transmission tool to send ci=CSi(ri) to all Pj. 

 Open commits: ∀i≥2, Pi uses the authenticated computation 

tool to send si,ri to all parties that already have ci.  

 If Pj obtains ri agreeing with ci, it sets ri
j=ri (also, rj

j=rj). 

  Otherwise it aborts.  

 If P1 did not abort, it sets r=⊕i=1…nri , sends Cs(r) to all other 

parties (to be used for the main protocol), and proves that 

Cs(r) was constructed correctly. 

 (details in the next slide) 
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Tool 3: multi-party augmented coin-tossing 
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 P1 sends Cs(r) to all other parties, and proves that it was 

constructed correctly. 

 

 Namely, P1 runs the authenticated computation 

functionality 

 P1 chooses a random s. Its input to the protocol is 

(r1,s1,s,⊕j=2…nri
1)  

 Pj’s input is c1, ⊕j=2…nri
j 
.  

 If c1=CS1(r1) and ⊕j=2…nri
j  = ⊕j=2…nri

1, then Pj outputs 

Cs(⊕j=1…nri) = Cs(r). Otherwise it aborts. 

 P1 outputs r. 
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Tool 3: multi-party augmented coin-tossing 

(contd.) 
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 Protocol: 

 Pi chooses random r’i and uses the image transmission 

functionality to send c’=Cr’i(xi) to all parties. 

 

 Run augmented coin-tossing protocol s.t. Pi learns (ri,r”i) 

and others learn c”=Cr”i(ri).  

 

 Run authenticated computation where Pi has input 

(xi,ri,r’i,r”i) and others input (c’,c”), and others learn Cri(xi) if 

(c’,c”) are the required functions of Pi’s input. 
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The main protocol: 

Input commitment phase 
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 Each Pi runs the augmented coin tossing protocol 

where 

 Pi learns (ri,si) 

 The other parties learn Csi(r
i). 
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The main protocol: 

coin generation phase 
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 The parties use the authenticated computation 

functionality 

 (a,b2,…,bn)→(λ,v2, …,vn), where vj=f(a) if bj=h(a)  and vj=λ 

otherwise. 

 Suppose that it is Pi’s turn to send a message 

 Its input is (xi,r
i,Tt), as well as the coins used for 

commitments, where Tt is the sequence of messages 

exchanged so far. 

 Every other party has input (C(xi),C(ri),Tt) 

 f(xi,r
i,Tt) is the message Pi must send 

 It is accepted if (C(xi),C(ri),T) agree with xi,ri,T and the 

program that is run 

32 

The main protocol: 

Protocol emulation phase 
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 Can compute any functionality securely in presence 

of semi-honest adversaries 
 

 Protocol is efficient enough for use, for circuits that 

are not too large 
 

 The full proof is in Goldreich’s book. 
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Summary 
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