
page 1 

Secure Computation 

 

Unconditionally Secure Multi-

Party Computation 

Benny Pinkas 

 

June 10, 2014 



 “Completeness theorems for non-cryptographic fault-

tolerant distributed computation” 

 M. Ben-Or, S. Goldwasser, A. Wigderson, 1988. 

 

 Published concurrently with “Multiparty unconditionally secure 

protocols” Chaum, Crepau, Damgard. 

 

 Published after the results of Yao and GMW, with the 

motivation of obtaining results without any intractability                        

assumptions. 
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 “Completeness theorems for non-cryptographic fault-

tolerant distributed computation” 

 M. Ben-Or, S. Goldwasser, A. Wigderson, 1988. 

 

 The setting 

 A complete synchronous network of n parties 

 Each party Pi has an input xi 

 Communication channels between parties are secure 

 The solution for the malicious case requires a broadcast 

channel 
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 The function f(x1,…,xn) is represented by an 

arithmetic circuit over a field F (say, modulo a large 

prime) 

 

 Contains addition and multiplication gates in F 

 Can be more compact than a Boolean circuit 

 We need only care about deterministic functionalities:   

 A randomized functionality f(r; x1,…,xn) can be 

computed by each party providing (ri,xi), and the circuit 

computing                          and using r=r1…rn. 
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 The construction provides unconditional security 

 Against semi-honest adversaries controlling t<n/2 

parties 

 Against malicious adversaries controlling t<n/3 parties 

 

 Unlike the GMW construction, which is based on 

cryptographic assumptions 

 oblivious transfer 

 ZK proofs 
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 t-out-of-n secret sharing  

 Given a secret s, provide shares to n parties, s.t. 
 Any t shares enable the reconstruction of the secret 

 Any t-1 shares reveal nothing about the secret  
 

 Consider 2-out-of-n secret sharing. 
 Define a line which intersects the  

 Y axis at S 

 The shares are points on the line 

 Any two shares define S 

 A single share reveals nothing 
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 Fact: Let F be a field. Any d+1 pairs (ai , bi ) define a 

unique polynomial P  of degree ≤ d, s.t. P(ai )=bi.  

(assuming d < |F|). 

 

 Shamir’s secret sharing scheme: 

 The secret S is an element in a field (say, in Zp). 

 Define a polynomial P of degree t-1 by choosing 

random coefficients a1,…,at-1 and defining  

P(x) = at-1x
 t-1+…+a1x+S. 

 The share of party Pj is ( j, P(j) ). 
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 Reconstructing the secret: 

 Assume we have P(x1),…,P(xt ). 

 Use Lagrange interpolation to compute the unique 

polynomial of degree ≤ t-1 which agrees with these 

points. 

 Output the free coefficient of this polynomial.  

 

 Lagrange interpolation 

 P(x) = ∑i=1..t P(xi )·Li(x) 

 where Li(x)=∏j≠i(x-xj ) / ∏j≠i(xi-xj )   

   (Note that Li (xi )=1, Li (xj )=0 for  j≠i.) 
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 Perfect secrecy: Any t-1 shares give no information about 
the secret,  Pr(secret=s | P(1),…, P(t-1)) = Pr(secret=s).  

 Proof:  

 Intuition from 2-out-of-n secret sharing: 

 The polynomial is generated by choosing a random 
coefficient a  and defining P(x)= ax+s. 

 Suppose that the adversary knows the share P(1)=a1+s. 

 

 For any value of s, there is a one-to-one correspondence 
between a and P(1)  (a=P(1)-s).  

 Since a is uniformly distributed, so is P(1) 

 Therefore P(1) does not reveal any                           
information about s. 
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 Perfect secrecy: Any t-1 shares give no information 
about the secret. 

 Proved by showing that, even given S,  any t-1 shares are 
uniformly distributed.    

 Proof:  
 The polynomial is generated by choosing a random 

polynomial of degree t-1, subject to P(0)=S. 

 

 Suppose that the adversary knows the shares P(1),…,P(t-1). 

 The values of P(1),…,P(t-1) are defined by an invertible set 
of t-1 linear equations  of a1,…,at-1, s. 

 P(i) = j=1,…,t-1 ( i ) 
j aj + s. 
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 Proof (cont.):  

 The values of P(1),…,P(t-1) are defined by an invertible 

set of t-1 linear equations of a1,…,at-1, s. 

 P(xi) =  j=1,…,t-1 ( i ) 
j aj + s. 

 For any possible value of s, there is a exactly one set of 

values of a1,…,at-1 which gives the values P(1),…,P(t-1). 

 This set of a1,…,at-1 can be found by solving a linear 

system of equations.  

 Since a1,…,at-1 are uniformly distributed, so are the values 

of P(x1),…,P(xt-1).  

 ⇒P(x1),…,P(xt-1) reveal nothing about s. 
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 Ideal size: 

 Each share is the same size as the secret. 

 

 Homomorphic property: 

 Suppose P(1),…,P(n) are shares of S, 

 and P’(1),…,P’(n) are shares of S’, 

 then P(1)+P’(1),… ,P(n)+P’(n) are shares of S+S’. 
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 Input sharing phase 

 Computation phase 

 Output reconstruction phase 

 

 Main idea: 

 for every wire, the parties will know a secret sharing of 

the value which passes through that wire. 
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 Let t<n/2  be a bound on the number of corrupt 

parties. 

 Each Pi generates a (t+1)-out-of-n sharing of its input 

xi. 

 Namely, chooses a polynomial fi() of degree t over F,  

s.t. fi(0)=xi 

 Any subset of t shares does not leak any information 

about xi 

 t+1 shares reveal xi 

 Pi sends to each Pj the value fi(j). 

 

 The protocol continues from the input wires to the 

output wires. 14 
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 All parties participate in the computation of every 

gate 

 Already know a sharing of its input wires 

 Must generate a sharing of the output wire 

 Addition gate: c = a+b 

 Must generate a polynomial fc() of degree t, which is 

random except for fc(0)=a+b. Each Pi learns fc(i). 

 Define fc(·) = fa(·)+fb(·) 

 Each Pi sets ci=ai+bi=fa(i)+fb(i)=fc(i) 

 No interaction is needed! 

 What about multiplication gates? 
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 Easier to first describe the output phase than to 

describe the protocol for multiplication gates 

 

 Output wires 

 If output wire yi must be learned by Pi, then all parties 

send it their shares of yi. 

 Pi reconstructs the secret and learns the output value. 
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 c = a·b.  First attempt: 

 Define fab(·) = fa(·)·fb(·). 

 Each Pi computes ai·bi = fa(i)·fb(i) = fab(i). 

 Indeed, fab(0) = a·b. 

 But the degree of fab is 2t, and fab is not a random 

polynomial. 

 Interpolation: 

 fab is of degree 2t<n, and fab(0) = a·b. 

 Therefore   Lagrange coefficients r1,…,rn s.t.   

fab(0) = a·b = r1fab(1)+…rnfab(n) =  r1·a1b1+…rn·anbn. 

 Each ri is easily computable. 
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 Each Pi 

 Has ai·bi 

 Creates a random polynomial gi(·) of degree t  s.t.  

gi(0)=ai· bi 

 

 Consider g(x)=i=1…nri·gi(x) 

 of degree t 

 g(0)=i=1…nri·gi(0) = i=1…n ri· aibi = i=1…n ri· fab(i) = a· b. 

 This is exactly the polynomial we need.  

 Must provide each Pi  with a share of g(). 
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 Each Pi 

 Creates a random polynomial gi(·) of degree t s.t. 

gi(0)=ai·bi 

 Define g(x)=i=1…nri·gi(x), of degree t. g(0)=i=1…nri·gi(0) = 

a·b. 

 

 Pi sends to every Pj the value gi(j) 

 Every Pj receives g1(j),…,gn(j), computes g(j)= 

i=1…nri·gi(j)  

 This is the desired sharing of a· b. 
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 Correctness is straightforward 

 

 Overhead: 

 O(n2) messages for every multiplication gate 

 # of rounds linear in depth of circuit (where only 

multiplication gates count) 
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 Main idea: every set of t players, receives in each 

round values which are t-wise independent, and 

therefore uniformly distributed.  

 Therefore no information about the actual wire values 

are leaked.  

21 

Security 

June 10, 2014 



 Recall what we showed 

 In (t+1)-out-of-n secret sharing, any t shares are 

uniformly distributed, independently of the secret. 

 

 Suppose first that multiplication is computed by an 

oracle (call this the fmult hybrid model) 

 The simulator obtains the inputs and outputs of the t 

corrupt parties 

 The transcript of a party includes its input, randomness 

used, all messages received. 
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 Adversary controls a set J of t < n/2 parties. 

 The simulator: 

 PiJ, set input zi=xi.  PiJ, set input zi=0. 

 Share inputs zi according to protocol. 

 Addition gates: add shares as in protocol. 

 Mult gates: provide PiJ with shares of a random 

sharing of the value 0. 

 

 Simulation is correct since t shares of any value are 

uniformly distributed. 
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 Output stage: 

  wire, the simulator already defined shares for all 

PiJ. 

 

 Let w be an output wire of PiJ. The simulator has the 

output value yw, and the t shares of PiJ. 

 

 The simulator interpolates the t-degree polynomial fw 

going through these values. It then simulates receiving 

the shares fw(i)  from all PiJ. 

 

 Let w be an output wire of PjJ. For all PiJ, the 

simulator  sends the corresponding share to Pj. 
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 Recall, the multiplication protocol 

 Pi creates a random poly gi(·) of deg t s.t. gi(0)=ai·bi 

 Pi sends to  Pj the value gi(j), and receive shares gj(i) 

 Pi computes its share as g(i)= j=1…nrj·gj(i). 

   

 Simulation  PiJ: 

 Create a random poly gi(·) of deg t s.t. gi(0)=Pi’s share 

 Send to every Pj the value gi(j) 

 PjJ simulate receipt of a random share gj(i) 

 Compute share of wire value as g(i)= j=1…nrj·gj(i) 
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 Aka security against Byzantine adversaries 

 Possible problems in using the previous protocol: 

 When sharing its input, Pi might send values of a 

polynomial of degree greater than t. 

 As a result, different subsets of the clients might 

recover different values as the secret. 

 Parties might send incorrect shares 

 How can we interpolate in this case? 

 

 Protocol secure against t<n/3 
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 Sharing stage 

 Add elements to the shares so that parties are assured 

to receive values of a polynomial of degree t (even if 

the dealer is malicious) 

 Recovery stage 

 As long as t<n/3 shares are corrupt, use error 

correction techniques to recover the secret. 

 Based on the fact that Shamir’s secret sharing scheme 

is a Reed-Solomon code, which can correct up to t<n/3 

errors. 
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 Reed-Solomon code 

  A linear [n,k,d]-code, with k=t+1, and d=n-t. 

 The message is (m0,…mt). 

 Use it as the coefficients of a degree t polynomial, Pm. 

 

 Codeword is Pm(1),…,Pm(n). 

 Two codewords differ in at least d=n-t locations. 

  efficient decoding correcting (n-t-1)/2 errors. 

 If t<n/3, correcting up to t errors. 
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 Usage: 

 Let P() be a polynomial of degree t. (E.g., the polynomial 

used for (t+1)-out-of-n secret sharing.) 

 If instead of receiving P(1),P(2),…,P(n), we receive up 

to t<n/3 corrupt values, can still recover P. 

 (And in particular, recover P(0), the secret.) 

 

 Conclusion: 

 Can easily handle corrupt parties which send corrupt 

shares. 

 Need to focus on forcing the dealer to distribute shares 

consistent with a t-degree polynomial. 
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 f(x,y) = i=0…tj=0…t ai,j·x
i·yj 

 

 Defined by (t+1)2 coefficients 

 Claim: f(x,y) can be defined by t+1 univariate 

polynomials: 

 Given t+1 polynomials of degree t: f1(x),…,ft+1(x)  

there exists a single bivariate polynomial of degree t 

such that f(x,1)=f1(x), …, f(x,t+1)=ft+1(x) 
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Bivariate polynomials 

f(x,1) = f1(x) 

f(x,2) = f2(x) 

f(x,3) = f3(x) 
∶ 

June 10, 2014 



 

 Dealer defines a random bivariate polynomial f(x,y) 

of degree t, s.t. f(0,0)= secret. 

 Sends to Pi the share fi(x)=f(x,i).  (t-deg poly) 

 By the claim, any t+1 shares suffice to reveal secret. 

 Sends to Pi the dual share gi(x)=f(i,x). 

 Will be used for checking shares received from other 

parties 
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VSS using Bivariate polynomials - Step 1 

(t+1)-out-of-n secret sharing 

f(x,i) = fi(x) 

f(i,x) = gi(x) 
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 Claim: subset J of size t, the shares and dual 

shares of PiJ do not reveal the secret. 

 Assume wlog J=1,2,…,t. 

 f1(x),…,ft(x), each of degree t, enforce t·(t+1) 

constraints of the bivariate polynomial f. 

 g1(x),…,gt(x), each add another constraint. 

 Total # of constraints is t(t+1)+t=t2+2t=(t+1)2-1. None of 

them defines f(0,0) directly. 
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 Each party Pi: 

  j, send fi(j) and gi(j) to Pj. 

  j, let (uj,vj) the values received from Pj. 

 If uj  gi(j) or vj  fi(j), then broadcast “complaint(i, j, fi(j), 

gi(j))”.   
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fi(x) 

gj(x) gi(x) 

fj(x) 

uj=fj(i)=gi(j) 

vj=gj(i)=fi(j) 

(the two values Pi was 

supposed to receive) 

whom should we 

believe? 
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 The dealer: 

 Upon receiving the message “complaint(i, j, fi(j), gi(j))” 

sent by Pi, 

 check that fi(j)=f(i,j) and that gi(j)=f(j,i). 

 If the checks fail, broadcast polynomials: 

reveal(i,fi(x),gi(x)). 

 (Namely, if Pi sent an incorrect complaint,  broadcast 

the shares that it received from dealer.) 

 

 Now, whom should the parties believe, Pi or the 

dealer? 
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 Each Pi 

1. If Pi views two messages complaint(k,j,u1,v1) and 

complaint(j,k,u2,v2), and the dealer did not broadcast a 

corresponding reveal message, go to 3. 

 

2. If Pi views a message reveal(j,fj(x),gj(y)), check if it 

agrees with Pi’s shares: fi(j)=gj(i) and gi(j)=fj(i). If the 

check succeeds, broadcast “good” (i.e., I agree with 

the dealer). 

 

3. If at least n-t parties broadcasted “good” then use the 

shares that they have.  Otherwise they abort. 
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 Assume dealer is honest 

 An honest PJ complains only if a corrupt Pi sends it 

incorrect values. But since the complaint of Pi contains 

good values, the dealer does not reveal PJ’s share. 

 

 If a corrupt Pi complains with incorrect values, dealer 

sends a reveal message of Pi’s shares, 

which passes the test of the n-t honest parties, 

which then send n-t good messages 

and therefore output the correct shares which enable 

to recover the secret.   
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 Assume dealer is corrupt 

 Suppose Pi,Pk are honest and receive inconsistent 

shares: fj(k)gk(j), or gj(k)fk(j). 

 Both parties complain, and therefore dealer must send 

reveal message or else no honest party broadcasts good. 

 The shares are used only if n-t parties output “good”. 

Some might be corrupt, but at least (n-t)-t=t+1 of them are 

honest. 

 Their polynomials agree with those revealed by the 

dealer. 

 These t+1 polynomials define a unique bivariate poly, 

which defines the secret. 

 That’s all that we need. 37 
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 Inputs are shared using VSS. 

 Therefore dealer deals consistent shares.  

 

 Addition gates are trivial. 

 

 Multiplication gates: 

 Must ensure that each party multiplies its own shares. 

 Must use a VSS to perform the sharing defined by the 

protocol. 

 The full description and proof are quite intricate. 
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 No public key operations are needed! 

 Input sharing step is more complicated than in the 

semi-honest case 

 Length of messages increases by O(n) 

 But this protocol is run only once, and has O(1) rounds. 

 

 Multiplication gates 

 Requires the use of a VSS  

 Message length increases by O(n) 
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