
page 1

Secure Computation

Unconditionally Secure Multi-

Party Computation

Benny Pinkas

June 10, 2014

 “Completeness theorems for non-cryptographic fault-

tolerant distributed computation”

 M. Ben-Or, S. Goldwasser, A. Wigderson, 1988.

 Published concurrently with “Multiparty unconditionally secure

protocols” Chaum, Crepau, Damgard.

 Published after the results of Yao and GMW, with the

motivation of obtaining results without any intractability

assumptions.

2

Overview

June 10, 2014

 “Completeness theorems for non-cryptographic fault-

tolerant distributed computation”

 M. Ben-Or, S. Goldwasser, A. Wigderson, 1988.

 The setting

 A complete synchronous network of n parties

 Each party Pi has an input xi

 Communication channels between parties are secure

 The solution for the malicious case requires a broadcast

channel

3

Overview

June 10, 2014

 The function f(x1,…,xn) is represented by an

arithmetic circuit over a field F (say, modulo a large

prime)

 Contains addition and multiplication gates in F

 Can be more compact than a Boolean circuit

 We need only care about deterministic functionalities:

 A randomized functionality f(r; x1,…,xn) can be

computed by each party providing (ri,xi), and the circuit

computing and using r=r1…rn.

4

Overview (contd.)

June 10, 2014

 The construction provides unconditional security

 Against semi-honest adversaries controlling t<n/2

parties

 Against malicious adversaries controlling t<n/3 parties

 Unlike the GMW construction, which is based on

cryptographic assumptions

 oblivious transfer

 ZK proofs

5

Overview (contd.)

June 10, 2014

 t-out-of-n secret sharing

 Given a secret s, provide shares to n parties, s.t.
 Any t shares enable the reconstruction of the secret

 Any t-1 shares reveal nothing about the secret

 Consider 2-out-of-n secret sharing.
 Define a line which intersects the

 Y axis at S

 The shares are points on the line

 Any two shares define S

 A single share reveals nothing

6

Main tool – secret sharing

s

1 2 3

June 10, 2014

 Fact: Let F be a field. Any d+1 pairs (ai , bi) define a

unique polynomial P of degree ≤ d, s.t. P(ai)=bi.

(assuming d < |F|).

 Shamir’s secret sharing scheme:

 The secret S is an element in a field (say, in Zp).

 Define a polynomial P of degree t-1 by choosing

random coefficients a1,…,at-1 and defining

P(x) = at-1x
 t-1+…+a1x+S.

 The share of party Pj is (j, P(j)).

7

t-out-of-n secret sharing

June 10, 2014

 Reconstructing the secret:

 Assume we have P(x1),…,P(xt).

 Use Lagrange interpolation to compute the unique

polynomial of degree ≤ t-1 which agrees with these

points.

 Output the free coefficient of this polynomial.

 Lagrange interpolation

 P(x) = ∑i=1..t P(xi)·Li(x)

 where Li(x)=∏j≠i(x-xj) / ∏j≠i(xi-xj)

 (Note that Li (xi)=1, Li (xj)=0 for j≠i.)

8

t-out-of-n secret sharing

June 10, 2014

 Perfect secrecy: Any t-1 shares give no information about
the secret, Pr(secret=s | P(1),…, P(t-1)) = Pr(secret=s).

 Proof:

 Intuition from 2-out-of-n secret sharing:

 The polynomial is generated by choosing a random
coefficient a and defining P(x)= ax+s.

 Suppose that the adversary knows the share P(1)=a1+s.

 For any value of s, there is a one-to-one correspondence
between a and P(1) (a=P(1)-s).

 Since a is uniformly distributed, so is P(1)

 Therefore P(1) does not reveal any
information about s.

9

Properties of Shamir’s secret sharing

June 10, 2014

 Perfect secrecy: Any t-1 shares give no information
about the secret.

 Proved by showing that, even given S, any t-1 shares are
uniformly distributed.

 Proof:
 The polynomial is generated by choosing a random

polynomial of degree t-1, subject to P(0)=S.

 Suppose that the adversary knows the shares P(1),…,P(t-1).

 The values of P(1),…,P(t-1) are defined by an invertible set
of t-1 linear equations of a1,…,at-1, s.

 P(i) = j=1,…,t-1 (i)
j aj + s.

10

Properties of Shamir’s secret sharing

June 10, 2014

 Proof (cont.):

 The values of P(1),…,P(t-1) are defined by an invertible

set of t-1 linear equations of a1,…,at-1, s.

 P(xi) =  j=1,…,t-1 (i)
j aj + s.

 For any possible value of s, there is a exactly one set of

values of a1,…,at-1 which gives the values P(1),…,P(t-1).

 This set of a1,…,at-1 can be found by solving a linear

system of equations.

 Since a1,…,at-1 are uniformly distributed, so are the values

of P(x1),…,P(xt-1).

 ⇒P(x1),…,P(xt-1) reveal nothing about s.

11

Properties of Shamir’s secret sharing

June 10, 2014

 Ideal size:

 Each share is the same size as the secret.

 Homomorphic property:

 Suppose P(1),…,P(n) are shares of S,

 and P’(1),…,P’(n) are shares of S’,

 then P(1)+P’(1),… ,P(n)+P’(n) are shares of S+S’.

12

Additional properties of Shamir’s secret

sharing

June 10, 2014

 Input sharing phase

 Computation phase

 Output reconstruction phase

 Main idea:

 for every wire, the parties will know a secret sharing of

the value which passes through that wire.

13

The BGW protocol

June 10, 2014

 Let t<n/2 be a bound on the number of corrupt

parties.

 Each Pi generates a (t+1)-out-of-n sharing of its input

xi.

 Namely, chooses a polynomial fi() of degree t over F,

s.t. fi(0)=xi

 Any subset of t shares does not leak any information

about xi

 t+1 shares reveal xi

 Pi sends to each Pj the value fi(j).

 The protocol continues from the input wires to the

output wires. 14

BGW protocol – input phase

June 10, 2014

 All parties participate in the computation of every

gate

 Already know a sharing of its input wires

 Must generate a sharing of the output wire

 Addition gate: c = a+b

 Must generate a polynomial fc() of degree t, which is

random except for fc(0)=a+b. Each Pi learns fc(i).

 Define fc(·) = fa(·)+fb(·)

 Each Pi sets ci=ai+bi=fa(i)+fb(i)=fc(i)

 No interaction is needed!

 What about multiplication gates?

15

Computation phase

June 10, 2014

 Easier to first describe the output phase than to

describe the protocol for multiplication gates

 Output wires

 If output wire yi must be learned by Pi, then all parties

send it their shares of yi.

 Pi reconstructs the secret and learns the output value.

16

Output phase

June 10, 2014

 c = a·b. First attempt:

 Define fab(·) = fa(·)·fb(·).

 Each Pi computes ai·bi = fa(i)·fb(i) = fab(i).

 Indeed, fab(0) = a·b.

 But the degree of fab is 2t, and fab is not a random

polynomial.

 Interpolation:

 fab is of degree 2t<n, and fab(0) = a·b.

 Therefore  Lagrange coefficients r1,…,rn s.t.

fab(0) = a·b = r1fab(1)+…rnfab(n) = r1·a1b1+…rn·anbn.

 Each ri is easily computable.

17

Computation phase – multiplication gates

June 10, 2014

 Each Pi

 Has ai·bi

 Creates a random polynomial gi(·) of degree t s.t.

gi(0)=ai· bi

 Consider g(x)=i=1…nri·gi(x)

 of degree t

 g(0)=i=1…nri·gi(0) = i=1…n ri· aibi = i=1…n ri· fab(i) = a· b.

 This is exactly the polynomial we need.

 Must provide each Pi with a share of g().

18

Computation phase – multiplication gates

June 10, 2014

 Each Pi

 Creates a random polynomial gi(·) of degree t s.t.

gi(0)=ai·bi

 Define g(x)=i=1…nri·gi(x), of degree t. g(0)=i=1…nri·gi(0) =

a·b.

 Pi sends to every Pj the value gi(j)

 Every Pj receives g1(j),…,gn(j), computes g(j)=

i=1…nri·gi(j)

 This is the desired sharing of a· b.

19

Computation phase – multiplication gates

June 10, 2014

 Correctness is straightforward

 Overhead:

 O(n2) messages for every multiplication gate

 # of rounds linear in depth of circuit (where only

multiplication gates count)

20

Properties

June 10, 2014

 Main idea: every set of t players, receives in each

round values which are t-wise independent, and

therefore uniformly distributed.

 Therefore no information about the actual wire values

are leaked.

21

Security

June 10, 2014

 Recall what we showed

 In (t+1)-out-of-n secret sharing, any t shares are

uniformly distributed, independently of the secret.

 Suppose first that multiplication is computed by an

oracle (call this the fmult hybrid model)

 The simulator obtains the inputs and outputs of the t

corrupt parties

 The transcript of a party includes its input, randomness

used, all messages received.

22

Simulation based proof

June 10, 2014

 Adversary controls a set J of t < n/2 parties.

 The simulator:

 PiJ, set input zi=xi.  PiJ, set input zi=0.

 Share inputs zi according to protocol.

 Addition gates: add shares as in protocol.

 Mult gates: provide PiJ with shares of a random

sharing of the value 0.

 Simulation is correct since t shares of any value are

uniformly distributed.

23

Simulation based proof

June 10, 2014

 Output stage:

  wire, the simulator already defined shares for all

PiJ.

 Let w be an output wire of PiJ. The simulator has the

output value yw, and the t shares of PiJ.

 The simulator interpolates the t-degree polynomial fw

going through these values. It then simulates receiving

the shares fw(i) from all PiJ.

 Let w be an output wire of PjJ. For all PiJ, the

simulator sends the corresponding share to Pj.
24

Simulation based proof

June 10, 2014

 Recall, the multiplication protocol

 Pi creates a random poly gi(·) of deg t s.t. gi(0)=ai·bi

 Pi sends to  Pj the value gi(j), and receive shares gj(i)

 Pi computes its share as g(i)= j=1…nrj·gj(i).



 Simulation  PiJ:

 Create a random poly gi(·) of deg t s.t. gi(0)=Pi’s share

 Send to every Pj the value gi(j)

 PjJ simulate receipt of a random share gj(i)

 Compute share of wire value as g(i)= j=1…nrj·gj(i)

25

Simulating the multiplication protocol

June 10, 2014

 Aka security against Byzantine adversaries

 Possible problems in using the previous protocol:

 When sharing its input, Pi might send values of a

polynomial of degree greater than t.

 As a result, different subsets of the clients might

recover different values as the secret.

 Parties might send incorrect shares

 How can we interpolate in this case?

 Protocol secure against t<n/3

26

Security against malicious parties

June 10, 2014

 Sharing stage

 Add elements to the shares so that parties are assured

to receive values of a polynomial of degree t (even if

the dealer is malicious)

 Recovery stage

 As long as t<n/3 shares are corrupt, use error

correction techniques to recover the secret.

 Based on the fact that Shamir’s secret sharing scheme

is a Reed-Solomon code, which can correct up to t<n/3

errors.

27

Major tool – Verifiable Secret Sharing (VSS)

June 10, 2014

 Reed-Solomon code

 A linear [n,k,d]-code, with k=t+1, and d=n-t.

 The message is (m0,…mt).

 Use it as the coefficients of a degree t polynomial, Pm.

 Codeword is Pm(1),…,Pm(n).

 Two codewords differ in at least d=n-t locations.

  efficient decoding correcting (n-t-1)/2 errors.

 If t<n/3, correcting up to t errors.

28

The Reed-Solomon code

June 10, 2014

 Usage:

 Let P() be a polynomial of degree t. (E.g., the polynomial

used for (t+1)-out-of-n secret sharing.)

 If instead of receiving P(1),P(2),…,P(n), we receive up

to t<n/3 corrupt values, can still recover P.

 (And in particular, recover P(0), the secret.)

 Conclusion:

 Can easily handle corrupt parties which send corrupt

shares.

 Need to focus on forcing the dealer to distribute shares

consistent with a t-degree polynomial.

29

Using the Reed-Solomon code

June 10, 2014

 f(x,y) = i=0…tj=0…t ai,j·x
i·yj

 Defined by (t+1)2 coefficients

 Claim: f(x,y) can be defined by t+1 univariate

polynomials:

 Given t+1 polynomials of degree t: f1(x),…,ft+1(x)

there exists a single bivariate polynomial of degree t

such that f(x,1)=f1(x), …, f(x,t+1)=ft+1(x)

30

Bivariate polynomials

f(x,1) = f1(x)

f(x,2) = f2(x)

f(x,3) = f3(x)
∶

June 10, 2014

 Dealer defines a random bivariate polynomial f(x,y)

of degree t, s.t. f(0,0)= secret.

 Sends to Pi the share fi(x)=f(x,i). (t-deg poly)

 By the claim, any t+1 shares suffice to reveal secret.

 Sends to Pi the dual share gi(x)=f(i,x).

 Will be used for checking shares received from other

parties

31

VSS using Bivariate polynomials - Step 1

(t+1)-out-of-n secret sharing

f(x,i) = fi(x)

f(i,x) = gi(x)

June 10, 2014

 Claim: subset J of size t, the shares and dual

shares of PiJ do not reveal the secret.

 Assume wlog J=1,2,…,t.

 f1(x),…,ft(x), each of degree t, enforce t·(t+1)

constraints of the bivariate polynomial f.

 g1(x),…,gt(x), each add another constraint.

 Total # of constraints is t(t+1)+t=t2+2t=(t+1)2-1. None of

them defines f(0,0) directly.

32

VSS using Bivariate polynomials

June 10, 2014

 Each party Pi:

  j, send fi(j) and gi(j) to Pj.

  j, let (uj,vj) the values received from Pj.

 If uj  gi(j) or vj  fi(j), then broadcast “complaint(i, j, fi(j),

gi(j))”.

33

fi(x)

gj(x) gi(x)

fj(x)

uj=fj(i)=gi(j)

vj=gj(i)=fi(j)

(the two values Pi was

supposed to receive)

whom should we

believe?

June 10, 2014

 The dealer:

 Upon receiving the message “complaint(i, j, fi(j), gi(j))”

sent by Pi,

 check that fi(j)=f(i,j) and that gi(j)=f(j,i).

 If the checks fail, broadcast polynomials:

reveal(i,fi(x),gi(x)).

 (Namely, if Pi sent an incorrect complaint, broadcast

the shares that it received from dealer.)

 Now, whom should the parties believe, Pi or the

dealer?

34

VSS using Bivariate polynomials – Step 3

June 10, 2014

 Each Pi

1. If Pi views two messages complaint(k,j,u1,v1) and

complaint(j,k,u2,v2), and the dealer did not broadcast a

corresponding reveal message, go to 3.

2. If Pi views a message reveal(j,fj(x),gj(y)), check if it

agrees with Pi’s shares: fi(j)=gj(i) and gi(j)=fj(i). If the

check succeeds, broadcast “good” (i.e., I agree with

the dealer).

3. If at least n-t parties broadcasted “good” then use the

shares that they have. Otherwise they abort.

35

VSS using Bivariate polynomials – Step 4

June 10, 2014

 Assume dealer is honest

 An honest PJ complains only if a corrupt Pi sends it

incorrect values. But since the complaint of Pi contains

good values, the dealer does not reveal PJ’s share.

 If a corrupt Pi complains with incorrect values, dealer

sends a reveal message of Pi’s shares,

which passes the test of the n-t honest parties,

which then send n-t good messages

and therefore output the correct shares which enable

to recover the secret.

36

VSS Security proof - Sketch

June 10, 2014

 Assume dealer is corrupt

 Suppose Pi,Pk are honest and receive inconsistent

shares: fj(k)gk(j), or gj(k)fk(j).

 Both parties complain, and therefore dealer must send

reveal message or else no honest party broadcasts good.

 The shares are used only if n-t parties output “good”.

Some might be corrupt, but at least (n-t)-t=t+1 of them are

honest.

 Their polynomials agree with those revealed by the

dealer.

 These t+1 polynomials define a unique bivariate poly,

which defines the secret.

 That’s all that we need. 37

VSS Security proof - Sketch

June 10, 2014

 Inputs are shared using VSS.

 Therefore dealer deals consistent shares.

 Addition gates are trivial.

 Multiplication gates:

 Must ensure that each party multiplies its own shares.

 Must use a VSS to perform the sharing defined by the

protocol.

 The full description and proof are quite intricate.

38

The full protocol

June 10, 2014

 No public key operations are needed!

 Input sharing step is more complicated than in the

semi-honest case

 Length of messages increases by O(n)

 But this protocol is run only once, and has O(1) rounds.

 Multiplication gates

 Requires the use of a VSS

 Message length increases by O(n)

39

Overhead

June 10, 2014

