Secure Computation

Unconditionally Secure MultiParty Computation

Benny Pinkas

Overview

- "Completeness theorems for non-cryptographic faulttolerant distributed computation"
- M. Ben-Or, S. Goldwasser, A. Wigderson, 1988.
- Published concurrently with "Multiparty unconditionally secure protocols" Chaum, Crepau, Damgard.
- Published after the results of Yao and GMW, with the motivation of obtaining results without any intractability assumptions.

Overview

- "Completeness theorems for non-cryptographic faulttolerant distributed computation"
- M. Ben-Or, S. Goldwasser, A. Wigderson, 1988.
- The setting
- A complete synchronous network of n parties
- Each party P_{i} has an input x_{i}
- Communication channels between parties are secure The solution for the malicious case requires a broadcast channel

Overview (contd.)

- The function $f\left(x_{1}, \ldots, x_{n}\right)$ is represented by an arithmetic circuit over a field F (say, modulo a large prime)
- Contains addition and multiplication gates in F
- Can be more compact than a Boolean circuit
- We need only care about deterministic functionalities:
- A randomized functionality $f\left(r ; x_{1}, \ldots, x_{n}\right)$ can be computed by each party providing ($r_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}$), and the circuit computing and using $r=r_{1} \oplus \ldots \oplus r_{n}$.

Overview (contd.)

- The construction provides unconditional security
- Against semi-honest adversaries controlling t<n/2 parties
- Against malicious adversaries controlling $\mathrm{t} \mathrm{n} / 3$ parties
- Unlike the GMW construction, which is based on cryptographic assumptions
- oblivious transfer
- ZK proofs

Main tool - secret sharing

- t-out-of-n secret sharing
- Given a secret s, provide shares to n parties, s.t. - Any t shares enable the reconstruction of the secret
- Any $t-1$ shares reveal nothing about the secret
- Consider 2-out-of- n secret sharing.
- Define a line which intersects the Y axis at S
- The shares are points on the line
- Any two shares define S

- A single share reveals nothing

t-out-of-n secret sharing

- Fact: Let F be a field. Any $d+1$ pairs $\left(a_{i}, b_{i}\right)$ define a unique polynomial P of degree $\leq d$, s.t. $P\left(a_{i}\right)=b_{i}$. (assuming $\mathrm{d}<|\mathrm{F}|$).
- Shamir's secret sharing scheme:
- The secret S is an element in a field (say, in Zp).
- Define a polynomial P of degree $\mathrm{t}-1$ by choosing random coefficients a_{1}, \ldots, a_{t-1} and defining
$P(x)=a_{t-1} x^{t-1}+\ldots+a_{1} x+\underline{S}$.
* The share of party P_{j} is $(j, P(j))$.

t-out-of-n secret sharing

- Reconstructing the secret:
- Assume we have $\mathrm{P}\left(\mathrm{x}_{1}\right), \ldots, \mathrm{P}\left(\mathrm{x}_{\mathrm{t}}\right)$.
- Use Lagrange interpolation to compute the unique polynomial of degree $\leq t-1$ which agrees with these points.
- Output the free coefficient of this polynomial.
- Lagrange interpolation
- $P(x)=\sum_{i=1 . . t} P\left(x_{i}\right) \cdot L_{i}(x)$
- where $L_{i}(x)=\prod_{j \neq i}\left(x-x_{j}\right) / \prod_{j \neq i}\left(x_{i}-x_{j}\right)$
(Note that $\mathrm{L}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}\right)=1, \mathrm{~L}_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{j}}\right)=0$ for $\mathrm{j} \neq \mathrm{i}$.)

Properties of Shamir's secret sharing

- Perfect secrecy: Any t-1 shares give no information about the secret, $\operatorname{Pr}($ secret=s $\mid P(1), \ldots, P(t-1))=\operatorname{Pr}($ secret=s $)$.
- Proof:
- Intuition from 2-out-of-n secret sharing:
- The polynomial is generated by choosing a random coefficient a and defining $P(x)=a \cdot x+s$.
- Suppose that the adversary knows the share $P(1)=a \cdot 1+s$.
- For any value of s, there is a one-to-one correspondence between a and $P(1) \quad(a=P(1)-s)$.
- Since a is uniformly distributed, so is $P(1)$
, Therefore $P(1)$ does not reveal any information about s.

Properties of Shamir's secret sharing

- Perfect secrecy: Any t-1 shares give no information about the secret.
- Proved by showing that, even given S, any t-1 shares are uniformly distributed.
- Proof:
- The polynomial is generated by choosing a random polynomial of degree $t-1$, subject to $P(0)=S$.
- Suppose that the adversary knows the shares $\mathrm{P}(1), \ldots, \mathrm{P}(\mathrm{t}-1)$.
- The values of $P(1), \ldots, P(t-1)$ are defined by an invertible set of $t-1$ linear equations of $a_{1}, \ldots, a_{t-1}, s$.
, $P(i)=\Sigma_{j=1, \ldots, t-1}(i)^{j} a_{j}+s$.

Properties of Shamir's secret sharing

- Proof (cont.):
- The values of $P(1), \ldots, P(t-1)$ are defined by an invertible set of $t-1$ linear equations of $a_{1}, \ldots, a_{t-1}, s$.

$$
P\left(x_{i}\right)=\sum_{j=1, \ldots, t-1}(i)^{j} a_{j}+s .
$$

- For any possible value of s, there is a exactly one set of values of a_{1}, \ldots, a_{t-1} which gives the values $P(1), \ldots, P(t-1)$.
- This set of a_{1}, \ldots, a_{t-1} can be found by solving a linear system of equations.
- Since a_{1}, \ldots, a_{t-1} are uniformly distributed, so are the values of $P\left(x_{1}\right), \ldots, P\left(x_{t-1}\right)$.
$\Rightarrow P\left(x_{1}\right), \ldots, P\left(x_{t-1}\right)$ reveal nothing about s.

Additional properties of Shamir's secret sharing

- Ideal size:
- Each share is the same size as the secret.
- Homomorphic property:
- Suppose $P(1), \ldots, P(n)$ are shares of S,
and $P^{\prime}(1), \ldots, P^{\prime}(n)$ are shares of S^{\prime}, then $P(1)+P^{\prime}(1), \ldots, P(n)+P^{\prime}(n)$ are shares of $S+S^{\prime}$.

The BGW protocol

- Input sharing phase
- Computation phase
- Output reconstruction phase
- Main idea:
- for every wire, the parties will know a secret sharing of the value which passes through that wire.

BGW protocol - input phase

- Let $\mathrm{t}<\mathrm{n} / 2$ be a bound on the number of corrupt parties.
- Each P_{i} generates a ($\mathrm{t}+1$)-out-of-n sharing of its input x_{i}.
- Namely, chooses a polynomial $f_{i}()$ of degree t over F, s.t. $f_{i}(0)=x_{i}$
- Any subset of t shares does not leak any information about x_{i}
- $t+1$ shares reveal x_{i}
- P_{i} sends to each P_{j} the value $f_{i}(j)$.
- The protocol continues from the input wires to the
${ }^{1}$ ºutput wires.

Computation phase

- All parties participate in the computation of every gate
- Already know a sharing of its input wires
, Must generate a sharing of the output wire
- Addition gate: $\mathrm{c}=\mathrm{a}+\mathrm{b}$
- Must generate a polynomial $f_{c}()$ of degree t, which is random except for $f_{c}(0)=a+b$. Each P_{i} learns $f_{c}(i)$.
- Define $f_{c}(\cdot)=f_{a}(\cdot)+f_{b}(\cdot)$
- Each Pi sets $\mathrm{c}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}}+\mathrm{b}_{\mathrm{i}}=\mathrm{f}_{\mathrm{a}}(\mathrm{i})+\mathrm{f}_{\mathrm{b}}(\mathrm{i})=\mathrm{f}_{\mathrm{c}}(\mathrm{i})$
- No interaction is needed!
- What about multiplication gates?

Output phase

- Easier to first describe the output phase than to describe the protocol for multiplication gates
- Output wires
- If output wire y_{i} must be learned by P_{i}, then all parties send it their shares of y_{i}.
- P_{i} reconstructs the secret and learns the output value.

Computation phase - multiplication gates

- $c=a \cdot b$. First attempt:
- Define $f_{a b}(\cdot)=f_{a}(\cdot) \cdot f_{b}(\cdot)$.
- Each P_{i} computes $a_{i} \cdot b_{i}=f_{a}(i) \cdot f_{b}(i)=f_{a b}(i)$.
- Indeed, $\mathrm{f}_{\mathrm{ab}}(0)=\mathrm{a} \cdot \mathrm{b}$.
- But the degree of $f_{a b}$ is $2 t$, and $f_{a b}$ is not a random polynomial.
- Interpolation:
- $f_{a b}$ is of degree $2 \mathrm{t}<\mathrm{n}$, and $\mathrm{f}_{\mathrm{ab}}(0)=\mathrm{a} \cdot \mathrm{b}$.
- Therefore \exists Lagrange coefficients r_{1}, \ldots, r_{n} s.t. $f_{a b}(0)=a \cdot b=r_{1} f_{a b}(1)+\ldots r_{n} f_{a b}(n)=r_{1} \cdot a_{1} b_{1}+\ldots r_{n} \cdot a_{n} b_{n}$.
- Each r_{i} is easily computable.

Computation phase - multiplication gates

- Each P_{i}
- Has $a_{i} \cdot b_{i}$
- Creates a random polynomial $g_{i}(\cdot)$ of degree t s.t. $g_{i}(0)=a_{i} \cdot b_{i}$
- Consider $g(x)=\Sigma_{i=1 \ldots} \ldots r_{i} \cdot g_{i}(x)$
- of degree t
- $g(0)=\Sigma_{i=1 \ldots} \cdot r_{i} \cdot g_{i}(0)=\sum_{i=1 \ldots n} r_{i} \cdot a_{i} b_{i}=\Sigma_{i=1 \ldots n} r_{i} \cdot f_{a b}(i)=a \cdot b$.
- This is exactly the polynomial we need.
- Must provide each P_{i} with a share of $g()$.

Computation phase - multiplication gates

- Each P_{i}
- Creates a random polynomial $\mathrm{g}_{\mathrm{i}}(\cdot)$ of degree t s.t. $g_{i}(0)=a_{i} \cdot b_{i}$
- Define $g(x)=\Sigma_{i=1} \ldots r_{i} \cdot g_{i}(x)$, of degree $t . g(0)=\Sigma_{i=1} \ldots r_{i} \cdot g_{i}(0)=$ $a \cdot b$.
- P_{i} sends to every P_{j} the value $g_{i}(j)$
- Every P_{j} receives $g_{1}(j), \ldots, g_{n}(j)$, computes $g(j)=$ $\sum_{i=1 \ldots . \ldots} r_{i} \cdot g_{i}(j)$
- This is the desired sharing of $\mathrm{a} \cdot \mathrm{b}$.

Properties

- Correctness is straightforward
- Overhead:
- $\mathrm{O}\left(\mathrm{n}^{2}\right)$ messages for every multiplication gate
- \# of rounds linear in depth of circuit (where only multiplication gates count)

Security

- Main idea: every set of t players, receives in each round values which are t-wise independent, and therefore uniformly distributed.
- Therefore no information about the actual wire values are leaked.

Simulation based proof

- Recall what we showed
- In ($\mathrm{t}+1$)-out-of-n secret sharing, any t shares are uniformly distributed, independently of the secret.
- Suppose first that multiplication is computed by an oracle (call this the $f_{\text {mult }}$ hybrid model)
- The simulator obtains the inputs and outputs of the t corrupt parties
- The transcript of a party includes its input, randomness used, all messages received.

Simulation based proof

- Adversary controls a set J of $t<n / 2$ parties.
- The simulator:
- $\forall \mathrm{P}_{\mathrm{i}} \in J$, set input $\mathrm{z}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} . \forall \mathrm{P}_{\mathrm{i}} \notin \mathrm{J}$, set input $\mathrm{z}_{\mathrm{i}}=0$.
- Share inputs z_{i} according to protocol.
- Addition gates: add shares as in protocol.
- Mult gates: provide $P_{i} \in J$ with shares of a random sharing of the value 0 .
- Simulation is correct since t shares of any value are uniformly distributed.

Simulation based proof

Output stage:

- \forall wire, the simulator already defined shares for all $P_{i} \in J$.
* Let w be an output wire of $P_{i} \in J$. The simulator has the output value y_{w}, and the t shares of $P_{i} \in J$.

The simulator interpolates the t-degree polynomial f_{w} going through these values. It then simulates receiving the shares $f_{w}(i)$ from all $P_{i} \notin J$.
, Let w be an output wire of $P_{j} \notin J$. For all $P_{i} \in J$, the simulator sends the corresponding share to P_{j}.

Simulating the multiplication protocol

- Recall, the multiplication protocol
- P_{i} creates a random poly $g_{i}(\cdot)$ of deg t s.t. $g_{i}(0)=a_{i} \cdot b_{i}$
- P_{i} sends to $\forall P_{j}$ the value $g_{i}(j)$, and receive shares $g_{j}(i)$
- P_{i} computes its share as $g(i)=\Sigma_{j=1 \ldots n} r_{j} \cdot g_{j}(i)$.
- Simulation $\forall \mathrm{P}_{\mathrm{i}} \in \mathrm{J}$:
- Create a random poly $g_{i}(\cdot)$ of deg t s.t. $g_{i}(0)=P_{i}$'s share
- Send to every P_{j} the value $g_{i}(j)$
- $\forall P_{j} \notin J$ simulate receipt of a random share $g_{j}(i)$
- Compute share of wire value as $g(i)=\Sigma_{\mathrm{j}=1 \ldots . . r_{j}} \cdot g_{j}(\mathrm{i})$

Security against malicious parties

- Aka security against Byzantine adversaries
- Possible problems in using the previous protocol:
- When sharing its input, P_{i} might send values of a polynomial of degree greater than t.
- As a result, different subsets of the clients might recover different values as the secret.
- Parties might send incorrect shares
- How can we interpolate in this case?
- Protocol secure against $\mathrm{t}<\mathrm{n} / 3$

Major tool - Verifiable Secret Sharing (VSS)

- Sharing stage
- Add elements to the shares so that parties are assured to receive values of a polynomial of degree t (even if the dealer is malicious)
- Recovery stage
- As long as $\mathrm{t}<\mathrm{n} / 3$ shares are corrupt, use error correction techniques to recover the secret.
- Based on the fact that Shamir's secret sharing scheme is a Reed-Solomon code, which can correct up to $\mathrm{t}<\mathrm{n} / 3$ errors.

The Reed-Solomon code

- Reed-Solomon code

A linear [$n, k, d]$-code, with $k=t+1$, and $d=n-t$.
, The message is $\left(\mathrm{m}_{0}, \ldots \mathrm{~m}_{\mathrm{t}}\right)$.

- Use it as the coefficients of a degree t polynomial, P_{m}.
- Codeword is $\left\langle P_{m}(1), \ldots, P_{m}(n)\right\rangle$.
- Two codewords differ in at least d=n-t locations.
- \exists efficient decoding correcting (n-t-1)/2 errors.
- If $\mathrm{t}<\mathrm{n} / 3$, correcting up to t errors.

Using the Reed-Solomon code

- Usage:
- Let P() be a polynomial of degree t. (E.g., the polynomial used for ($\mathrm{t}+1$)-out-of-n secret sharing.)
- If instead of receiving $\langle\mathrm{P}(1), \mathrm{P}(2), \ldots, \mathrm{P}(\mathrm{n})\rangle$, we receive up to $t<n / 3$ corrupt values, can still recover P.
(And in particular, recover $\mathrm{P}(0)$, the secret.)
- Conclusion:
- Can easily handle corrupt parties which send corrupt shares.
- Need to focus on forcing the dealer to distribute shares consistent with a t -degree polynomial.

Bivariate polynomials

- $f(x, y)=\Sigma_{i=0 \ldots . . t} \Sigma_{j=0 \ldots t} a_{i, j} \cdot x^{i} \cdot y^{j}$
- Defined by $(t+1)^{2}$ coefficients
- Claim: $f(x, y)$ can be defined by $t+1$ univariate polynomials:
, Given $t+1$ polynomials of degree t : $f_{1}(x), \ldots, f_{t+1}(x)$ there exists a single bivariate polynomial of degree t such that $f(x, 1)=f_{1}(x), \ldots, f(x, t+1)=f_{t+1}(x)$

$$
\begin{aligned}
: \quad f(x, 3) & =f_{3}(x) \\
f(x, 2) & =f_{2}(x) \\
f(x, 1) & =f_{1}(x)
\end{aligned}
$$

VSS using Bivariate polynomials - Step 1 $(t+1)$-out-of-n secret sharing

- Dealer defines a random bivariate polynomial $f(x, y)$ of degree t, s.t. $f(0,0)=$ secret.
- Sends to P_{i} the share $f_{i}(x)=f(x, i)$. (t-deg poly)
- By the claim, any $t+1$ shares suffice to reveal secret.
- Sends to P_{i} the dual share $g_{i}(x)=f(i, x)$.
, Will be used for checking shares received from other parties

$$
\begin{aligned}
& f(i, x)=g_{i}(x) \\
& \quad f(x, i)=f_{i}(x)
\end{aligned}
$$

VSS using Bivariate polynomials

- Claim: \forall subset J of size t, the shares and dual shares of $P_{i} \in J$ do not reveal the secret.
- Assume wlog J=1,2,...,t.
- $f_{1}(x), \ldots, f_{t}(x)$, each of degree t, enforce $t \cdot(t+1)$ constraints of the bivariate polynomial f.
। $g_{1}(x), \ldots, g_{t}(x)$, each add another constraint.
- Total \# of constraints is $\mathrm{t}(\mathrm{t}+1)+\mathrm{t}=\mathrm{t}^{2}+2 \mathrm{t}=(\mathrm{t}+1)^{2}-1$. None of them defines $f(0,0)$ directly.

VSS using Bivariate polynomials - Step 2

- Each party P_{i} :
- $\forall \mathrm{j}$, send $\mathrm{f}_{\mathrm{i}}(\mathrm{j})$ and $\mathrm{g}_{\mathrm{i}}(\mathrm{j})$ to P_{j}.
- $\forall \mathrm{j}$, let $\left(\mathrm{u}_{\mathrm{j}}, \mathrm{v}_{\mathrm{j}}\right)$ the values received from P_{j}.

If $u_{j} \neq g_{i}(j)$ or $v_{j} \neq f_{i}(j)$, then broadcast "complaint $\left(i, j, f_{i}(j)\right.$, $g_{i}(j)$)".
(the two values P_{i} was supposed to receive)

VSS using Bivariate polynomials - Step 3

- The dealer:
- Upon receiving the message "complaint($\left(\mathrm{i}, \mathrm{j}, \mathrm{f}_{\mathrm{i}}(\mathrm{j}), \mathrm{g}_{\mathrm{i}}(\mathrm{j})\right.$)" sent by P_{i},
check that $f_{i}(j)=f(i, j)$ and that $g_{i}(j)=f(j, i)$.
- If the checks fail, broadcast polynomials:
reveal $\left(\mathrm{i}, \mathrm{f}_{\mathrm{i}}(\mathrm{x}), \mathrm{g}_{\mathrm{i}}(\mathrm{x})\right.$).
- (Namely, if P_{i} sent an incorrect complaint, broadcast the shares that it received from dealer.)
- Now, whom should the parties believe, P_{i} or the dealer?

VSS using Bivariate polynomials - Step 4

- Each P_{i}

1. If P_{i} views two messages complaint $\left(\mathrm{k}, \mathrm{j}, \mathrm{u}_{1}, \mathrm{v}_{1}\right)$ and complaint $\left(\mathrm{j}, \mathrm{k}, \mathrm{u}_{2}, \mathrm{v}_{2}\right)$, and the dealer did not broadcast a corresponding reveal message, go to 3 .
2. If P_{i} views a message reveal $\left(\mathrm{j}, \mathrm{f}_{\mathrm{j}}(\mathrm{x}), \mathrm{g}_{\mathrm{j}}(\mathrm{y})\right)$, check if it agrees with P_{i} 's shares: $f_{i}(j)=g_{j}(i)$ and $g_{i}(j)=f_{j}(i)$. If the check succeeds, broadcast "good" (i.e., I agree with the dealer).
3. If at least n-t parties broadcasted "good" then use the shares that they have. Otherwise they abort.

VSS Security proof - Sketch

- Assume dealer is honest
- An honest P_{j} complains only if a corrupt P_{i} sends it incorrect values. But since the complaint of P_{i} contains good values, the dealer does not reveal P_{j} 's share.
- If a corrupt P_{i} complains with incorrect values, dealer sends a reveal message of P_{i} 's shares, which passes the test of the n-t honest parties, which then send n-t good messages and therefore output the correct shares which enable to recover the secret.

VSS Security proof - Sketch

Assume dealer is corrupt

- Suppose $\mathrm{P}_{\mathrm{i}}, \mathrm{P}_{\mathrm{k}}$ are honest and receive inconsistent shares: $\mathrm{f}_{\mathrm{j}}(\mathrm{k}) \neq \mathrm{g}_{\mathrm{k}}(\mathrm{j})$, or $\mathrm{g}_{\mathrm{j}}(\mathrm{k}) \neq \mathrm{f}_{\mathrm{k}}(\mathrm{j})$.
- Both parties complain, and therefore dealer must send reveal message or else no honest party broadcasts good.
- The shares are used only if n-t parties output "good". Some might be corrupt, but at least ($n-t$) $-\mathrm{t}=\mathrm{t}+1$ of them are honest.
- Their polynomials agree with those revealed by the dealer.
- These $t+1$ polynomials define a unique bivariate poly, which defines the secret.
- 87 That's all that we need.

The full protocol

- Inputs are shared using VSS.
- Therefore dealer deals consistent shares.
- Addition gates are trivial.
- Multiplication gates:
- Must ensure that each party multiplies its own shares.
- Must use a VSS to perform the sharing defined by the protocol.
- The full description and proof are quite intricate.

Overhead

- No public key operations are needed!
- Input sharing step is more complicated than in the semi-honest case
- Length of messages increases by $\mathrm{O}(\mathrm{n})$
- But this protocol is run only once, and has $\mathrm{O}(1)$ rounds.
- Multiplication gates
- Requires the use of a VSS
- Message length increases by $O(n)$

