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Overview

» “Completeness theorems for non-cryptographic fault-
tolerant distributed computation”

M. Ben-Or, S. Goldwasser, A. Wigderson, 1988.

Published concurrently with “Multiparty unconditionally secure
protocols” Chaum, Crepau, Damgard.

» Published after the results of Yao and GMW, with the
motivation of obtaining results without any intractability
assumptions.
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Overview

» “Completeness theorems for non-cryptographic fault-
tolerant distributed computation”
M. Ben-Or, S. Goldwasser, A. Wigderson, 1988.

» The setting
A complete synchronous network of n parties
Each party P, has an input x;
Communication channels between parties are secure

The solution for the malicious case requires a broadcast
channel
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Overview (contd.)

» The function f(x,,...,x,) IS represented by an
arithmetic circuit over a field F (say, modulo a large
prime)

Contains addition and multiplication gates in F
Can be more compact than a Boolean circuit
We need only care about deterministic functionalities:

A randomized functionality f(r; x,,...,X,) can be
computed by each party providing (r;,x;), and the circuit
computing and using r=r,®...®r,.
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Overview (contd.)

» The construction provides unconditional security

Against semi-honest adversaries controlling t<n/2
parties

Against malicious adversaries controlling t<n/3 parties

» Unlike the GMW construction, which is based on
cryptographic assumptions

oblivious transfer
ZK proofs
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Main tool — secret sharing

» t-out-of-n secret sharing

» Glven a secret s, provide shares to n parties, s.t.
Any t shares enable the reconstruction of the secret
Any t-1 shares reveal nothing about the secret

» Consider 2-out-of-n secret sharing.
Define a line which intersects the
Y axis at S

The shares are points on the line 1 2 3
Any two shares define S
A single share reveals nothing
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t-out-of-n secret sharing

» Fact: Let F be a field. Any d+1 pairs (a;, b;) define a
unique polynomial P of degree < d, s.t. P(a;)=b..
(assuming d < |F|).

» Shamir’s secret sharing scheme:
The secret S is an element in a field (say, in Zp).

Define a polynomial P of degree t-1 by choosing
random coefficients a,,...,a,; and defining

P(x) = a_x"+...+a,x+S.
The share of party P; is (j, P(j) ).
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t-out-of-n secret sharing

» Reconstructing the secret:
Assume we have P(X,),...,P(X;).

Use Lagrange interpolation to compute the unique

polynomial of degree < t-1 which agrees with these
points.

Output the free coefficient of this polynomial.

» Lagrange interpolation
P(x) = 2i=1.1 P(X)-Li(x)
where Li(X)=[ T(x-%; ) / [jzi(%-X;)
(Note that L; (x;)=1, L; (x;)=0 for j#i.)
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Properties of Shamir’s secret sharing

» Perfect secrecy: Any t-1 shares give no information about
the secret, Pr(secret=s | P(1),..., P(t-1)) = Pr(secret=s).
» Proof:
Intuition from 2-out-of-n secret sharing:

The polynomial is generated by choosing a random
coefficient a and defining P(x)= a-x+s.

Suppose that the adversary knows the share P(1)=a-1+s.

For any value of s, there is a one-to-one correspondence
between a and P(1) (a=P(1)-s).
Since a is uniformly distributed, so is P(1)

Therefore P(1) does not reveal any
iInformation about s.
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Properties of Shamir’s secret sharing

» Perfect secrecy: Any t-1 shares give no information
about the secret.

» Proved by showing that, even given S, any t-1 shares are
uniformly distributed.

» Proof:

The polynomial is generated by choosing a random
polynomial of degree t-1, subject to P(0)=S.

Suppose that the adversary knows the shares P(1),...,P(t-1).

The values of P(1),...,P(t-1) are defined by an invertible set
of t-1 linear equations of a,,...,a,, S.
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Properties of Shamir’s secret sharing

» Proof (cont.):

The values of P(1),...,P(t-1) are defined by an invertible

set of t-1 linear equations of a,,...,a.4, S.
PX) =221 1 ( i)jaj +S.

For any possible value of s, there is a exactly one set of

values of a,,...,a,; which gives the values P(1),...,P(t-1).
This set of a,,...,a,, can be found by solving a linear
system of equations.

Since a,,...,a,; are uniformly distributed, so are the values
of P(Xy),....P(X¢1).

=>P(x1) ,P(x.,) reveal nothing about s.
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Additional properties of Shamir’s secret
sharing

» Ideal size:
Each share is the same size as the secret.

» Homomorphic property:
Suppose P(1),...,P(n) are shares of S,
and P’(1),...,P’(n) are shares of S,
then P(1)+P’(1),... ,P(n)+P’(n) are shares of S+S'.
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The BGW protocol

» Input sharing phase
» Computation phase
» Output reconstruction phase

» Malin idea:

for every wire, the parties will know a secret sharing of
the value which passes through that wire.
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BGW protocol — input phase

» Let t<n/2 be a bound on the number of corrupt
parties.
» Each P, generates a (t+1)-out-of-n sharing of its input
X:.
Namely, chooses a polynomial f() of degree t over F,
s.t. fi(0)=x;
Any subset of t shares does not leak any information
about x.
t+1 shares reveal x;

» P;sends to each P, the value fi(j).

» The protocol continues from the input wires to the
output wires. June 10, 2014



Computation phase

» All parties participate in the computation of every
gate

Already know a sharing of its input wires
Must generate a sharing of the output wire
» Addition gate: c = a+b

Must generate a polynomial f.() of degree t, which is
random except for f (O)=a+b. Each P; learns f_(i).

Define fy(+) = f,(-)+f,(")
Each Pi sets c;=a,+b=f_(i)+f,(1)=f.(i)
No interaction is needed!

» What about multiplication gates?
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Output phase

» Easier to first describe the output phase than to
describe the protocol for multiplication gates

» Output wires

If output wire y, must be learned by P;, then all parties
send it their shares of y..

P, reconstructs the secret and learns the output value.
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Computation phase — multiplication gates

» ¢ =a-b. First attempt:
Define f,,(-) = fa(+)-T,(+).
Each P, computes a;-b, = f_(1)-f (1) = f_,(1).
Indeed, f_,(0) = a-b.

But the degree of f, is 2t, and f_,, Is not a random
polynomial.

» Interpolation:
f,, I1s of degree 2t<n, and f_,(0) = a-b.
Therefore 3 Lagrange coefficients rq,...,r, S.t.
f,(0) =a-b=r/f (1)+...r,f,(n) = r;-a;b+...r-a,b,.
Each r; is easily computable.

17 June 10, 2014



Computation phase — multiplication gates

» Each P,
Has a;-b,
Creates a random polynomial g;(-) of degree t s.t.
gi(0)=a;- b

» Consider g(x)=Z; _[;-g(X)
of degree t
9(0)=Zicy nfi'0i(0) = Zicy a1 &0 = Ziey o 1 Tap(1) = @+ b.
This is exactly the polynomial we need.
Must provide each P, with a share of g().
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Computation phase — multiplication gates

» Each P,

Creates a random polynomial g;(-) of degree t s.t.
9i(0)=a;-b,

Define g(X)=Xi-;_,ri-9i(X), of degree t. g(0)=2i; ,f;-0i(0) =
a-b.

» P; sends to every P, the value g;())

» Every P, receives g,(j),..-,9,(), computes g(j)=
Ziz1 ali9i0)
» This Is the desired sharing of a- b.
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Properties

» Correctness is straightforward

» Overhead:
O(n?) messages for every multiplication gate

# of rounds linear in depth of circuit (where only
multiplication gates count)
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Security

» Main idea: every set of t players, receives in each
round values which are t-wise independent, and
therefore uniformly distributed.

Therefore no information about the actual wire values
are leaked.
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Simulation based proof

» Recall what we showed

In (t+1)-out-of-n secret sharing, any t shares are
uniformly distributed, independently of the secret.

» Suppose first that multiplication is computed by an
oracle (call this the f., hybrid model)

The simulator obtains the inputs and outputs of the t
corrupt parties

The transcript of a party includes its input, randomness
used, all messages received.
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Simulation based proof

» Adversary controls a set J of t < n/2 parties.
» The simulator:

23

VP;eJ, setinput z=x,. V P;¢J, set input z=0.
Share inputs z; according to protocol.
Addition gates: add shares as in protocol.

Mult gates: provide P,eJ with shares of a random
sharing of the value 0.

Simulation is correct since t shares of any value are
uniformly distributed.
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Simulation based proof

Output stage:

Vv wire, the simulator already defined shares for all
P.eJ.

Let w be an output wire of P,eJ. The simulator has the
output value y,,, and the t shares of P,eJ.

The simulator interpolates the t-degree polynomial f,
going through these values. It then simulates receiving
the shares f (i) from all P,zJ.

Let w be an output wire of P;¢J. For all P;eJ, the

simulator sends the corresponding share to P..
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Simulating the multiplication protocol

» Recall, the multiplication protocol
P, creates a random poly g;(-) of deg t s.t. g,(0)=a;-b;
P; sends to Vv P, the value g(j), and receive shares g(i)
P; computes its share as g(i)= i, _,f;-g;(1).

» Simulation V P,eJ:
Create a random poly g;(-) of deg t s.t. g;(0)=P;’s share
Send to every P; the value g;())
VP;¢J simulate receipt of a random share g;(i)
Compute share of wire value as g(i)= i, ,r;-9;(l)
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Security against malicious parties

» Aka security against Byzantine adversaries

» Possible problems in using the previous protocol:

When sharing its input, P; might send values of a
polynomial of degree greater than t.

As a result, different subsets of the clients might
recover different values as the secret.

Parties might send incorrect shares
How can we interpolate in this case?

» Protocol secure against t<n/3
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Major tool — Verifiable Secret Sharing (VSYS)

» Sharing stage

Add elements to the shares so that parties are assured

to receive values of a polynomial of degree t (even if
the dealer is malicious)

» Recovery stage

As long as t<n/3 shares are corrupt, use error
correction technigues to recover the secret.

Based on the fact that Shamir’s secret sharing scheme

IS a Reed-Solomon code, which can correct up to t<n/3
errors.
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The Reed-Solomon code

» Reed-Solomon code
A linear [n,k,d]-code, with k=t+1, and d=n-t.
The message is (mg,...m,).
Use it as the coefficients of a degree t polynomial, P,..

Codeword is (P,(1),...,P,(n)).

Two codewords differ in at least d=n-t locations.
3 efficient decoding correcting (n-t-1)/2 errors.
If t<n/3, correcting up to t errors.
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Using the Reed-Solomon code

» Usage:

Let P() be a polynomial of degree t. (E.g., the polynomial
used for (t+1)-out-of-n secret sharing.)

If instead of receiving (P(1),P(2),...,P(n)), we receive up
to t<n/3 corrupt values, can still recover P.

(And In particular, recover P(0), the secret.)

» Conclusion:

Can easily handle corrupt parties which send corrupt
shares.

Need to focus on forcing the dealer to distribute shares

consistent with-a t-degree polynomial.
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Bivariate polynomials
» T(X,Y) = Zico. Zi=o... ¢ ai,j'xi'yj

Defined by (t+1)? coefficients

Claim: f(x,y) can be defined by t+1 univariate
polynomials:

Given t+1 polynomials of degree t: f,(x),...,f.1(X)
there exists a single bivariate polynomial of degree t
such that f(x,1)=f,(x), ..., f(x,t+1)=f,,(X)

o (x3) = ()

f(x,2) = f,(x)

f(x,1) = ,(x)
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VSS using Bivariate polynomials - Step 1
(t+1)-out-of-n secret sharing

» Dealer defines a random bivariate polynomial f(x,y)
of degree t, s.t. f(0,0)= secret.

» Sends to P, the share f,(x)=f(x,I). (t-deg poly)
By the claim, any t+1 shares suffice to reveal secret.

» Sends to P, the dual share g;(x)=f(i,x).
Will be used for checking shares received from other

parties
f(1,x) = gi(x)

f(x,1) = 1,(x)

4
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VSS using Bivariate polynomials

» Claim: Vsubset J of size t, the shares and dual
shares of P,eJ do not reveal the secret.

32

Assume wlog J=1,2,...,t.

f,(x),...,f(x), each of degree t, enforce t-(t+1)
constraints of the bivariate polynomial f.
0,(x),-...,0{X), each add another constraint.

Total # of constraints is t(t+1)+t=t>+2t=(t+1)?-1. None of
them defines f(0,0) directly.

V'
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VSS using Bivariate polynomials — Step 2

» Each party P;:
Vv ], send fi(J) and g;(j) to P;.
Vv ], let (u;,v)) the values received from P;.
If u; = g;(J) or v, = f,(J), then broadcast “complaint(i, J, f(j),
gi())". (the two values P; was

. supposed to receive)
urfj(rl):gi(])
) -
gi( ) ,,,,,, gi(x) vi=g;()=F()
f(x)
Af(x) whom shoU_ld we
| believe?
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VSS using Bivariate polynomials — Step 3

» The dealer:
Upon receiving the message “complaint(i, |, fi(j), 9i(j))”
sent by P,
check that f;(j)=f(i,)) and that g;(j)=f(j,i).
If the checks fall, broadcast polynomials:
reveal(i,f(x),g:(x)).
(Namely, if P; sent an incorrect complaint, broadcast
the shares that it received from dealer.)

» Now, whom should the parties believe, P; or the
dealer?
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VSS using Bivariate polynomials — Step 4

» Each P,
If P, views two messages complaint(k,j,u,,v,) and
complaint(j,k,u,,v,), and the dealer did not broadcast a
corresponding reveal message, go to 3.

If P; views a message reveal(),f;(x),g;(y)), check if it
agrees with P;’'s shares: f(j)=g;(i) and g;())=f;(i). If the
check succeeds, broadcast “good” (i.e., | agree with
the dealer).

If at least n-t parties broadcasted “good” then use the
shares that they have. Otherwise they abort.
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VSS Security proof - Sketch

» Assume dealer is honest

36

An honest P, complains only if a corrupt P; sends it
Incorrect values. But since the complaint of P, contains
good values, the dealer does not reveal P,'s share.

If a corrupt P, complains with incorrect values, dealer
sends a reveal message of P;’s shares,

which passes the test of the n-t honest parties,
which then send n-t good messages

and therefore output the correct shares which enable
to recover the secret.
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VSS Security proof - Sketch

» Assume dealer is corrupt
Suppose P;,P, are honest and receive inconsistent
shares: fi(k)=g,(), or g;(k)=f.().
Both parties complain, and therefore dealer must send
reveal message or else no honest party broadcasts good.

The shares are used only if n-t parties output “good”.
Some might be corrupt, but at least (n-t)-t=t+1 of them are
honest.

Their polynomials agree with those revealed by the
dealer.

These t+1 polynomials define a unique bivariate poly,
which defines the secret.

87 That’s all that we need. June 10, 2014



The full protocol

» Inputs are shared using VSS.
Therefore dealer deals consistent shares.

» Addition gates are trivial.

» Multiplication gates:
Must ensure that each party multiplies its own shares.

Must use a VSS to perform the sharing defined by the
protocol.

The full description and proof are quite intricate.
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Overhead

» No public key operations are needed!

» Input sharing step is more complicated than in the
semi-honest case
Length of messages increases by O(n)
But this protocol is run only once, and has O(1) rounds.

» Multiplication gates

Requires the use of a VSS
Message length increases by O(n)
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