Secure Computation

Unconditionally Secure Multi-Party Computation

Benny Pinkas

June 10, 2014

Overview

- Completeness theorems for non-cryptographic faulttolerant distributed computation"
 - M. Ben-Or, S. Goldwasser, A. Wigderson, 1988.
 - Published concurrently with "Multiparty unconditionally secure protocols" Chaum, Crepau, Damgard.
- Published after the results of Yao and GMW, with the motivation of obtaining results without any intractability assumptions.

Overview

Completeness theorems for non-cryptographic faulttolerant distributed computation"

M. Ben-Or, S. Goldwasser, A. Wigderson, 1988.

The setting

- A complete synchronous network of n parties
- Each party P_i has an input x_i
- Communication channels between parties are secure
- The solution for the malicious case requires a broadcast channel

Overview (contd.)

- The function f(x₁,...,x_n) is represented by an arithmetic circuit over a field F (say, modulo a large prime)
 - Contains addition and multiplication gates in F
 - Can be more compact than a Boolean circuit
 - We need only care about deterministic functionalities:
 - A randomized functionality f(r; x₁,...,x_n) can be computed by each party providing (r_i,x_i), and the circuit computing and using r=r₁⊕...⊕r_n.

Overview (contd.)

- The construction provides unconditional security
 - Against semi-honest adversaries controlling t<n/2 parties
 - Against malicious adversaries controlling t<n/3 parties</p>
- Unlike the GMW construction, which is based on cryptographic assumptions
 - oblivious transfer
 - ZK proofs

Main tool – secret sharing

- t-out-of-n secret sharing
- Given a secret s, provide shares to n parties, s.t.
 - Any t shares enable the reconstruction of the secret
 - Any t-1 shares reveal nothing about the secret
- Consider 2-out-of-n secret sharing.
 - Define a line which intersects the Y axis at S
 - The shares are points on the line
 - Any two shares define S
 - A single share reveals nothing

t-out-of-n secret sharing

- Fact: Let F be a field. Any d+1 pairs (a_i, b_i) define a unique polynomial P of degree ≤ d, s.t. P(a_i)=b_i. (assuming d < |F|).</p>
- Shamir's secret sharing scheme:
 - The secret S is an element in a field (say, in Zp).
 - Define a polynomial P of degree t-1 by choosing random coefficients a₁,...,a_{t-1} and defining
 P(x) = a_{t-1}x^{t-1}+...+a₁x+S.
 - The share of party P_j is (j, P(j)).

t-out-of-n secret sharing

- Reconstructing the secret:
 - Assume we have $P(x_1), \dots, P(x_t)$.
 - ► Use Lagrange interpolation to compute the unique polynomial of degree ≤ t-1 which agrees with these points.
 - Output the free coefficient of this polynomial.
- Lagrange interpolation
 - $P(x) = \sum_{i=1..t} P(x_i) \cdot L_i(x)$
 - where $L_i(x) = \prod_{j \neq i} (x x_j) / \prod_{j \neq i} (x_i x_j)$

(Note that $L_i(x_i)=1$, $L_i(x_j)=0$ for $j\neq i$.)

Properties of Shamir's secret sharing

Perfect secrecy: Any t-1 shares give no information about the secret, Pr(secret=s | P(1),..., P(t-1)) = Pr(secret=s).

Proof:

- Intuition from 2-out-of-n secret sharing:
- The polynomial is generated by choosing a random coefficient a and defining P(x)= a·x+s.
- Suppose that the adversary knows the share $P(1)=a\cdot 1+s$.
- For any value of s, there is a one-to-one correspondence between a and P(1) (a=P(1)-s).
- Since a is uniformly distributed, so is P(1)
 - Therefore P(1) does not reveal any information about s.

Properties of Shamir's secret sharing

- Perfect secrecy: Any t-1 shares give no information about the secret.
- Proved by showing that, even given S, any t-1 shares are uniformly distributed.
- Proof:
 - The polynomial is generated by choosing a random polynomial of degree t-1, subject to P(0)=S.
 - Suppose that the adversary knows the shares P(1),...,P(t-1).
 - The values of P(1),...,P(t-1) are defined by an <u>invertible</u> set of t-1 linear equations of a₁,...,a_{t-1}, s.
 - ▶ $P(i) = \Sigma_{j=1,...,t-1} (i)^{j} a_{j} + s.$

Properties of Shamir's secret sharing

Proof (cont.):

The values of P(1),...,P(t-1) are defined by an <u>invertible</u> set of t-1 linear equations of a₁,...,a_{t-1}, s.

► $P(x_i) = \sum_{j=1,...,t-1} (i)^j a_j + s.$

- For any possible value of s, there is a exactly one set of values of a₁,...,a_{t-1} which gives the values P(1),...,P(t-1).
 - This set of a₁,...,a_{t-1} can be found by solving a linear system of equations.
- Since a₁,...,a_{t-1} are uniformly distributed, so are the values of P(x₁),...,P(x_{t-1}).

► \Rightarrow P(x₁),...,P(x_{t-1}) reveal nothing about s.

Additional properties of Shamir's secret sharing

- Ideal size:
 - Each share is the same size as the secret.
- Homomorphic property:
 - Suppose P(1),...,P(n) are shares of S, and P'(1),...,P'(n) are shares of S', then P(1)+P'(1),...,P(n)+P'(n) are shares of S+S'.

The BGW protocol

- Input sharing phase
- Computation phase
- Output reconstruction phase
- Main idea:
 - for every wire, the parties will know a secret sharing of the value which passes through that wire.

BGW protocol – input phase

- Let t<n/2 be a bound on the number of corrupt parties.
- Each P_i generates a (t+1)-out-of-n sharing of its input x_i.
 - Namely, chooses a polynomial f_i() of degree t over F, s.t. f_i(0)=x_i
 - Any subset of t shares does not leak any information about x_i
 - t+1 shares reveal x_i
- P_i sends to each P_j the value $f_i(j)$.

The protocol continues from the input wires to the ¹output wires.

Computation phase

- All parties participate in the computation of every gate
 - Already know a sharing of its input wires
 - Must generate a sharing of the output wire
- Addition gate: c = a+b
 - Must generate a polynomial $f_c()$ of degree t, which is random except for $f_c(0)=a+b$. Each P_i learns $f_c(i)$.
 - Define $f_c(\cdot) = f_a(\cdot) + f_b(\cdot)$
 - Each Pi sets $c_i = a_i + b_i = f_a(i) + f_b(i) = f_c(i)$
 - No interaction is needed!
- What about multiplication gates?

Output phase

 Easier to first describe the output phase than to describe the protocol for multiplication gates

Output wires

- If output wire y_i must be learned by P_i, then all parties send it their shares of y_i.
- P_i reconstructs the secret and learns the output value.

Computation phase – multiplication gates

- $c = a \cdot b$. First attempt:
 - Define $f_{ab}(\cdot) = f_a(\cdot) \cdot f_b(\cdot)$.
 - Each P_i computes $a_i \cdot b_i = f_a(i) \cdot f_b(i) = f_{ab}(i)$.
 - Indeed, $f_{ab}(0) = a \cdot b$.
 - But the degree of f_{ab} is 2t, and f_{ab} is not a random polynomial.

Interpolation:

- f_{ab} is of degree 2t<n, and $f_{ab}(0) = a \cdot b$.
- Therefore \exists Lagrange coefficients r_1, \dots, r_n s.t.

 $f_{ab}(0) = a \cdot b = r_1 f_{ab}(1) + \dots r_n f_{ab}(n) = r_1 \cdot a_1 b_1 + \dots r_n \cdot a_n b_n.$

Each r_i is easily computable.

Computation phase – multiplication gates

- Each P_i
 - ► Has a_i · b_i
 - Creates a random polynomial g_i(·) of degree t s.t. g_i(0)=a_i· b_i
- Consider $g(x) = \sum_{i=1...n} r_i \cdot g_i(x)$
 - of degree t
 - $g(0) = \sum_{i=1...n} r_i \cdot g_i(0) = \sum_{i=1...n} r_i \cdot a_i b_i = \sum_{i=1...n} r_i \cdot f_{ab}(i) = a \cdot b.$
 - > This is exactly the polynomial we need.
 - Must provide each P_i with a share of g().

Computation phase – multiplication gates

- Each P_i
 - Creates a random polynomial g_i(·) of degree t s.t. g_i(0)=a_i·b_i
 - Define $g(x) = \sum_{i=1...n} r_i \cdot g_i(x)$, of degree t. $g(0) = \sum_{i=1...n} r_i \cdot g_i(0) = a \cdot b$.
- P_i sends to every P_j the value $g_i(j)$
- Every P_j receives g₁(j),...,g_n(j), computes g(j)= Σ_{i=1...n}r_i·g_i(j)
- This is the desired sharing of a. b.

Properties

Correctness is straightforward

• Overhead:

- O(n²) messages for every multiplication gate
- # of rounds linear in depth of circuit (where only multiplication gates count)

Security

- Main idea: every set of t players, receives in each round values which are t-wise independent, and therefore uniformly distributed.
 - Therefore no information about the actual wire values are leaked.

Simulation based proof

- Recall what we showed
 - In (t+1)-out-of-n secret sharing, any t shares are uniformly distributed, independently of the secret.
- Suppose first that multiplication is computed by an oracle (call this the f_{mult} hybrid model)
 - The simulator obtains the inputs and outputs of the t corrupt parties
 - The transcript of a party includes its input, randomness used, all messages received.

Simulation based proof

- Adversary controls a set J of t < n/2 parties.</p>
- The simulator:
 - ▶ $\forall P_i \in J$, set input $z_i = x_i$. $\forall P_i \notin J$, set input $z_i = 0$.
 - Share inputs z_i according to protocol.
 - Addition gates: add shares as in protocol.
 - Mult gates: provide P_i∈J with shares of a random sharing of the value 0.
 - Simulation is correct since t shares of any value are uniformly distributed.

Simulation based proof

- Output stage:
 - ∀ wire, the simulator already defined shares for all P_i∈J.
 - Let w be an output wire of P_i∈J. The simulator has the output value y_w, and the t shares of P_i∈J.
 - The simulator interpolates the t-degree polynomial f_w going through these values. It then simulates receiving the shares f_w(i) from all P_i∉J.
- Let w be an output wire of P_j∉J. For all P_i∈J, the simulator sends the corresponding share to P_j.
 24

Simulating the multiplication protocol

Recall, the multiplication protocol

- ▶ P_i creates a random poly $g_i(\cdot)$ of deg t s.t. $g_i(0)=a_i \cdot b_i$
- ▶ P_i sends to \forall P_j the value $g_i(j)$, and receive shares $g_j(i)$
- P_i computes its share as $g(i) = \sum_{j=1...n} r_j \cdot g_j(i)$.
- Simulation $\forall P_i \in J$:
 - Create a random poly $g_i(\cdot)$ of deg t s.t. $g_i(0)=P_i$'s share
 - Send to every P_i the value g_i(j)
 - ► $\forall P_{i} \notin J$ simulate receipt of a random share $g_{i}(i)$
 - Compute share of wire value as $g(i) = \sum_{j=1...n} r_j \cdot g_j(i)$

Security against malicious parties

- Aka security against Byzantine adversaries
- Possible problems in using the previous protocol:
 - When sharing its input, P_i might send values of a polynomial of degree greater than t.
 - As a result, different subsets of the clients might recover different values as the secret.
 - Parties might send incorrect shares
 - How can we interpolate in this case?
- Protocol secure against t<n/3</p>

Major tool – Verifiable Secret Sharing (VSS)

Sharing stage

 Add elements to the shares so that parties are assured to receive values of a polynomial of degree t (even if the dealer is malicious)

Recovery stage

- As long as t<n/3 shares are corrupt, use error correction techniques to recover the secret.
- Based on the fact that Shamir's secret sharing scheme is a Reed-Solomon code, which can correct up to t<n/3 errors.

The Reed-Solomon code

- Reed-Solomon code
 - A linear [n,k,d]-code, with k=t+1, and d=n-t.
 - The message is $(m_0, \dots m_t)$.
 - ▶ Use it as the coefficients of a degree t polynomial, P_m.
 - Codeword is $\langle P_m(1), \dots, P_m(n) \rangle$.
 - Two codewords differ in at least d=n-t locations.
 - ► ∃ efficient decoding correcting (n-t-1)/2 errors.
 - If t<n/3, correcting up to t errors.</p>

Using the Reed-Solomon code

• Usage:

- Let P() be a polynomial of degree t. (E.g., the polynomial used for (t+1)-out-of-n secret sharing.)
- If instead of receiving (P(1),P(2),...,P(n)), we receive up to t<n/3 corrupt values, can still recover P.
 (And in particular, recover P(0), the secret.)

Conclusion:

- Can easily handle corrupt parties which send corrupt shares.
- Need to focus on forcing the dealer to distribute shares consistent with a t-degree polynomial.

Bivariate polynomials

•
$$f(x,y) = \sum_{i=0...t} \sum_{j=0...t} a_{i,j} \cdot x^i \cdot y^j$$

- Defined by (t+1)² coefficients
- Claim: f(x,y) can be defined by t+1 univariate polynomials:
 - Given t+1 polynomials of degree t: f₁(x),...,f_{t+1}(x) there exists a single bivariate polynomial of degree t such that f(x,1)=f₁(x), ..., f(x,t+1)=f_{t+1}(x)

:

$$f(x,3) = f_3(x)$$

 $f(x,2) = f_2(x)$
 $f(x,1) = f_1(x)$

VSS using Bivariate polynomials - Step 1 (t+1)-out-of-n secret sharing

- Dealer defines a random bivariate polynomial f(x,y) of degree t, s.t. f(0,0)= secret.
- Sends to P_i the share $f_i(x)=f(x,i)$. (t-deg poly)
 - By the claim, any t+1 shares suffice to reveal secret.
- Sends to P_i the dual share $g_i(x)=f(i,x)$.
 - Will be used for checking shares received from other parties

$$f(i,x) = g_i(x)$$
$$f(x,i) = f_i(x)$$

VSS using Bivariate polynomials

- Claim: ∀subset J of size t, the shares and dual shares of P_i∈J do not reveal the secret.
 - Assume wlog J=1,2,...,t.
 - f₁(x),...,f_t(x), each of degree t, enforce t·(t+1) constraints of the bivariate polynomial f.
 - $g_1(x), \dots, g_t(x)$, each add another constraint.
 - Total # of constraints is t(t+1)+t=t²+2t=(t+1)²-1. None of them defines f(0,0) directly.

VSS using Bivariate polynomials – Step 2

Each party P_i:

- ▶ \forall j, send f_i(j) and g_i(j) to P_j.
- ∀ j, let (u_j,v_j) the values received from P_j.
 If u_j ≠ g_i(j) or v_j ≠ f_i(j), then broadcast "complaint(i, j, f_i(j),
 g_i(j))".
 (the two values P_i was

VSS using Bivariate polynomials – Step 3

• The dealer:

- Upon receiving the message "complaint(i, j, f_i(j), g_i(j))" sent by P_i, check that f_i(j)=f(i,j) and that g_i(j)=f(j,i).
- If the checks fail, broadcast polynomials: reveal(i,f_i(x),g_i(x)).
- (Namely, if P_i sent an incorrect complaint, broadcast the shares that it received from dealer.)
- Now, whom should the parties believe, P_i or the dealer?

VSS using Bivariate polynomials – Step 4

Each P_i

- 1. If P_i views two messages complaint(k,j,u₁,v₁) and complaint(j,k,u₂,v₂), and the dealer did not broadcast a corresponding reveal message, go to 3.
- 2. If P_i views a message reveal($j, f_j(x), g_j(y)$), check if it agrees with P_i's shares: $f_i(j)=g_j(i)$ and $g_i(j)=f_j(i)$. If the check succeeds, broadcast "good" (i.e., I agree with the dealer).
- 3. If at least n-t parties broadcasted "good" then use the shares that they have. Otherwise they abort.

VSS Security proof - Sketch

- Assume dealer is honest
 - An honest P_J complains only if a corrupt P_i sends it incorrect values. But since the complaint of P_i contains good values, the dealer does not reveal P_J's share.

If a corrupt P_i complains with incorrect values, dealer sends a reveal message of P_i's shares, which passes the test of the n-t honest parties, which then send n-t good messages and therefore output the correct shares which enable to recover the secret.

VSS Security proof - Sketch

Assume dealer is corrupt

- Suppose P_i,P_k are honest and receive inconsistent shares: f_j(k)≠g_k(j), or g_j(k)≠f_k(j).
- Both parties complain, and therefore dealer must send reveal message or else no honest party broadcasts good.
- The shares are used only if n-t parties output "good". Some might be corrupt, but at least (n-t)-t=t+1 of them are honest.
- Their polynomials agree with those revealed by the dealer.
- These t+1 polynomials define a unique bivariate poly, which defines the secret.

B7 That's all that we need.

The full protocol

Inputs are shared using VSS.

- Therefore dealer deals consistent shares.
- Addition gates are trivial.
- Multiplication gates:
 - Must ensure that each party multiplies its own shares.
 - Must use a VSS to perform the sharing defined by the protocol.
 - The full description and proof are quite intricate.

Overhead

- No public key operations are needed!
- Input sharing step is more complicated than in the semi-honest case
 - Length of messages increases by O(n)
 - But this protocol is run only once, and has O(1) rounds.
- Multiplication gates
 - Requires the use of a VSS
 - Message length increases by O(n)