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 “Completeness theorems for non-cryptographic fault-

tolerant distributed computation” 

 M. Ben-Or, S. Goldwasser, A. Wigderson, 1988. 

 

 Published concurrently with “Multiparty unconditionally secure 

protocols” Chaum, Crepau, Damgard. 

 

 Published after the results of Yao and GMW, with the 

motivation of obtaining results without any intractability                        

assumptions. 

2 

Overview 

June 10, 2014 



 “Completeness theorems for non-cryptographic fault-

tolerant distributed computation” 

 M. Ben-Or, S. Goldwasser, A. Wigderson, 1988. 

 

 The setting 

 A complete synchronous network of n parties 

 Each party Pi has an input xi 

 Communication channels between parties are secure 

 The solution for the malicious case requires a broadcast 

channel 
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 The function f(x1,…,xn) is represented by an 

arithmetic circuit over a field F (say, modulo a large 

prime) 

 

 Contains addition and multiplication gates in F 

 Can be more compact than a Boolean circuit 

 We need only care about deterministic functionalities:   

 A randomized functionality f(r; x1,…,xn) can be 

computed by each party providing (ri,xi), and the circuit 

computing                          and using r=r1…rn. 
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Overview (contd.) 

June 10, 2014 



 The construction provides unconditional security 

 Against semi-honest adversaries controlling t<n/2 

parties 

 Against malicious adversaries controlling t<n/3 parties 

 

 Unlike the GMW construction, which is based on 

cryptographic assumptions 

 oblivious transfer 

 ZK proofs 
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 t-out-of-n secret sharing  

 Given a secret s, provide shares to n parties, s.t. 
 Any t shares enable the reconstruction of the secret 

 Any t-1 shares reveal nothing about the secret  
 

 Consider 2-out-of-n secret sharing. 
 Define a line which intersects the  

 Y axis at S 

 The shares are points on the line 

 Any two shares define S 

 A single share reveals nothing 
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Main tool – secret sharing 
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 Fact: Let F be a field. Any d+1 pairs (ai , bi ) define a 

unique polynomial P  of degree ≤ d, s.t. P(ai )=bi.  

(assuming d < |F|). 

 

 Shamir’s secret sharing scheme: 

 The secret S is an element in a field (say, in Zp). 

 Define a polynomial P of degree t-1 by choosing 

random coefficients a1,…,at-1 and defining  

P(x) = at-1x
 t-1+…+a1x+S. 

 The share of party Pj is ( j, P(j) ). 
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t-out-of-n  secret sharing 
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 Reconstructing the secret: 

 Assume we have P(x1),…,P(xt ). 

 Use Lagrange interpolation to compute the unique 

polynomial of degree ≤ t-1 which agrees with these 

points. 

 Output the free coefficient of this polynomial.  

 

 Lagrange interpolation 

 P(x) = ∑i=1..t P(xi )·Li(x) 

 where Li(x)=∏j≠i(x-xj ) / ∏j≠i(xi-xj )   

   (Note that Li (xi )=1, Li (xj )=0 for  j≠i.) 
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 Perfect secrecy: Any t-1 shares give no information about 
the secret,  Pr(secret=s | P(1),…, P(t-1)) = Pr(secret=s).  

 Proof:  

 Intuition from 2-out-of-n secret sharing: 

 The polynomial is generated by choosing a random 
coefficient a  and defining P(x)= ax+s. 

 Suppose that the adversary knows the share P(1)=a1+s. 

 

 For any value of s, there is a one-to-one correspondence 
between a and P(1)  (a=P(1)-s).  

 Since a is uniformly distributed, so is P(1) 

 Therefore P(1) does not reveal any                           
information about s. 
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 Perfect secrecy: Any t-1 shares give no information 
about the secret. 

 Proved by showing that, even given S,  any t-1 shares are 
uniformly distributed.    

 Proof:  
 The polynomial is generated by choosing a random 

polynomial of degree t-1, subject to P(0)=S. 

 

 Suppose that the adversary knows the shares P(1),…,P(t-1). 

 The values of P(1),…,P(t-1) are defined by an invertible set 
of t-1 linear equations  of a1,…,at-1, s. 

 P(i) = j=1,…,t-1 ( i ) 
j aj + s. 
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 Proof (cont.):  

 The values of P(1),…,P(t-1) are defined by an invertible 

set of t-1 linear equations of a1,…,at-1, s. 

 P(xi) =  j=1,…,t-1 ( i ) 
j aj + s. 

 For any possible value of s, there is a exactly one set of 

values of a1,…,at-1 which gives the values P(1),…,P(t-1). 

 This set of a1,…,at-1 can be found by solving a linear 

system of equations.  

 Since a1,…,at-1 are uniformly distributed, so are the values 

of P(x1),…,P(xt-1).  

 ⇒P(x1),…,P(xt-1) reveal nothing about s. 
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 Ideal size: 

 Each share is the same size as the secret. 

 

 Homomorphic property: 

 Suppose P(1),…,P(n) are shares of S, 

 and P’(1),…,P’(n) are shares of S’, 

 then P(1)+P’(1),… ,P(n)+P’(n) are shares of S+S’. 
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Additional properties of Shamir’s secret 
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 Input sharing phase 

 Computation phase 

 Output reconstruction phase 

 

 Main idea: 

 for every wire, the parties will know a secret sharing of 

the value which passes through that wire. 
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 Let t<n/2  be a bound on the number of corrupt 

parties. 

 Each Pi generates a (t+1)-out-of-n sharing of its input 

xi. 

 Namely, chooses a polynomial fi() of degree t over F,  

s.t. fi(0)=xi 

 Any subset of t shares does not leak any information 

about xi 

 t+1 shares reveal xi 

 Pi sends to each Pj the value fi(j). 

 

 The protocol continues from the input wires to the 

output wires. 14 

BGW protocol – input phase 
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 All parties participate in the computation of every 

gate 

 Already know a sharing of its input wires 

 Must generate a sharing of the output wire 

 Addition gate: c = a+b 

 Must generate a polynomial fc() of degree t, which is 

random except for fc(0)=a+b. Each Pi learns fc(i). 

 Define fc(·) = fa(·)+fb(·) 

 Each Pi sets ci=ai+bi=fa(i)+fb(i)=fc(i) 

 No interaction is needed! 

 What about multiplication gates? 
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Computation phase 
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 Easier to first describe the output phase than to 

describe the protocol for multiplication gates 

 

 Output wires 

 If output wire yi must be learned by Pi, then all parties 

send it their shares of yi. 

 Pi reconstructs the secret and learns the output value. 
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Output phase 
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 c = a·b.  First attempt: 

 Define fab(·) = fa(·)·fb(·). 

 Each Pi computes ai·bi = fa(i)·fb(i) = fab(i). 

 Indeed, fab(0) = a·b. 

 But the degree of fab is 2t, and fab is not a random 

polynomial. 

 Interpolation: 

 fab is of degree 2t<n, and fab(0) = a·b. 

 Therefore   Lagrange coefficients r1,…,rn s.t.   

fab(0) = a·b = r1fab(1)+…rnfab(n) =  r1·a1b1+…rn·anbn. 

 Each ri is easily computable. 
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Computation phase – multiplication gates 
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 Each Pi 

 Has ai·bi 

 Creates a random polynomial gi(·) of degree t  s.t.  

gi(0)=ai· bi 

 

 Consider g(x)=i=1…nri·gi(x) 

 of degree t 

 g(0)=i=1…nri·gi(0) = i=1…n ri· aibi = i=1…n ri· fab(i) = a· b. 

 This is exactly the polynomial we need.  

 Must provide each Pi  with a share of g(). 
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Computation phase – multiplication gates 
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 Each Pi 

 Creates a random polynomial gi(·) of degree t s.t. 

gi(0)=ai·bi 

 Define g(x)=i=1…nri·gi(x), of degree t. g(0)=i=1…nri·gi(0) = 

a·b. 

 

 Pi sends to every Pj the value gi(j) 

 Every Pj receives g1(j),…,gn(j), computes g(j)= 

i=1…nri·gi(j)  

 This is the desired sharing of a· b. 
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Computation phase – multiplication gates 
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 Correctness is straightforward 

 

 Overhead: 

 O(n2) messages for every multiplication gate 

 # of rounds linear in depth of circuit (where only 

multiplication gates count) 

20 

Properties 
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 Main idea: every set of t players, receives in each 

round values which are t-wise independent, and 

therefore uniformly distributed.  

 Therefore no information about the actual wire values 

are leaked.  
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Security 
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 Recall what we showed 

 In (t+1)-out-of-n secret sharing, any t shares are 

uniformly distributed, independently of the secret. 

 

 Suppose first that multiplication is computed by an 

oracle (call this the fmult hybrid model) 

 The simulator obtains the inputs and outputs of the t 

corrupt parties 

 The transcript of a party includes its input, randomness 

used, all messages received. 
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Simulation based proof 
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 Adversary controls a set J of t < n/2 parties. 

 The simulator: 

 PiJ, set input zi=xi.  PiJ, set input zi=0. 

 Share inputs zi according to protocol. 

 Addition gates: add shares as in protocol. 

 Mult gates: provide PiJ with shares of a random 

sharing of the value 0. 

 

 Simulation is correct since t shares of any value are 

uniformly distributed. 
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Simulation based proof 
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 Output stage: 

  wire, the simulator already defined shares for all 

PiJ. 

 

 Let w be an output wire of PiJ. The simulator has the 

output value yw, and the t shares of PiJ. 

 

 The simulator interpolates the t-degree polynomial fw 

going through these values. It then simulates receiving 

the shares fw(i)  from all PiJ. 

 

 Let w be an output wire of PjJ. For all PiJ, the 

simulator  sends the corresponding share to Pj. 
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Simulation based proof 
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 Recall, the multiplication protocol 

 Pi creates a random poly gi(·) of deg t s.t. gi(0)=ai·bi 

 Pi sends to  Pj the value gi(j), and receive shares gj(i) 

 Pi computes its share as g(i)= j=1…nrj·gj(i). 

   

 Simulation  PiJ: 

 Create a random poly gi(·) of deg t s.t. gi(0)=Pi’s share 

 Send to every Pj the value gi(j) 

 PjJ simulate receipt of a random share gj(i) 

 Compute share of wire value as g(i)= j=1…nrj·gj(i) 
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Simulating the multiplication protocol 
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 Aka security against Byzantine adversaries 

 Possible problems in using the previous protocol: 

 When sharing its input, Pi might send values of a 

polynomial of degree greater than t. 

 As a result, different subsets of the clients might 

recover different values as the secret. 

 Parties might send incorrect shares 

 How can we interpolate in this case? 

 

 Protocol secure against t<n/3 
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Security against malicious parties 
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 Sharing stage 

 Add elements to the shares so that parties are assured 

to receive values of a polynomial of degree t (even if 

the dealer is malicious) 

 Recovery stage 

 As long as t<n/3 shares are corrupt, use error 

correction techniques to recover the secret. 

 Based on the fact that Shamir’s secret sharing scheme 

is a Reed-Solomon code, which can correct up to t<n/3 

errors. 
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Major tool – Verifiable Secret Sharing (VSS) 

June 10, 2014 



 Reed-Solomon code 

  A linear [n,k,d]-code, with k=t+1, and d=n-t. 

 The message is (m0,…mt). 

 Use it as the coefficients of a degree t polynomial, Pm. 

 

 Codeword is Pm(1),…,Pm(n). 

 Two codewords differ in at least d=n-t locations. 

  efficient decoding correcting (n-t-1)/2 errors. 

 If t<n/3, correcting up to t errors. 
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The Reed-Solomon code 
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 Usage: 

 Let P() be a polynomial of degree t. (E.g., the polynomial 

used for (t+1)-out-of-n secret sharing.) 

 If instead of receiving P(1),P(2),…,P(n), we receive up 

to t<n/3 corrupt values, can still recover P. 

 (And in particular, recover P(0), the secret.) 

 

 Conclusion: 

 Can easily handle corrupt parties which send corrupt 

shares. 

 Need to focus on forcing the dealer to distribute shares 

consistent with a t-degree polynomial. 
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Using the Reed-Solomon code 
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 f(x,y) = i=0…tj=0…t ai,j·x
i·yj 

 

 Defined by (t+1)2 coefficients 

 Claim: f(x,y) can be defined by t+1 univariate 

polynomials: 

 Given t+1 polynomials of degree t: f1(x),…,ft+1(x)  

there exists a single bivariate polynomial of degree t 

such that f(x,1)=f1(x), …, f(x,t+1)=ft+1(x) 
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Bivariate polynomials 

f(x,1) = f1(x) 

f(x,2) = f2(x) 

f(x,3) = f3(x) 
∶ 

June 10, 2014 



 

 Dealer defines a random bivariate polynomial f(x,y) 

of degree t, s.t. f(0,0)= secret. 

 Sends to Pi the share fi(x)=f(x,i).  (t-deg poly) 

 By the claim, any t+1 shares suffice to reveal secret. 

 Sends to Pi the dual share gi(x)=f(i,x). 

 Will be used for checking shares received from other 

parties 
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VSS using Bivariate polynomials - Step 1 

(t+1)-out-of-n secret sharing 

f(x,i) = fi(x) 

f(i,x) = gi(x) 
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 Claim: subset J of size t, the shares and dual 

shares of PiJ do not reveal the secret. 

 Assume wlog J=1,2,…,t. 

 f1(x),…,ft(x), each of degree t, enforce t·(t+1) 

constraints of the bivariate polynomial f. 

 g1(x),…,gt(x), each add another constraint. 

 Total # of constraints is t(t+1)+t=t2+2t=(t+1)2-1. None of 

them defines f(0,0) directly. 
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VSS using Bivariate polynomials 

June 10, 2014 



 Each party Pi: 

  j, send fi(j) and gi(j) to Pj. 

  j, let (uj,vj) the values received from Pj. 

 If uj  gi(j) or vj  fi(j), then broadcast “complaint(i, j, fi(j), 

gi(j))”.   
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fi(x) 

gj(x) gi(x) 

fj(x) 

uj=fj(i)=gi(j) 

vj=gj(i)=fi(j) 

(the two values Pi was 

supposed to receive) 

whom should we 

believe? 
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 The dealer: 

 Upon receiving the message “complaint(i, j, fi(j), gi(j))” 

sent by Pi, 

 check that fi(j)=f(i,j) and that gi(j)=f(j,i). 

 If the checks fail, broadcast polynomials: 

reveal(i,fi(x),gi(x)). 

 (Namely, if Pi sent an incorrect complaint,  broadcast 

the shares that it received from dealer.) 

 

 Now, whom should the parties believe, Pi or the 

dealer? 
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VSS using Bivariate polynomials – Step 3 
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 Each Pi 

1. If Pi views two messages complaint(k,j,u1,v1) and 

complaint(j,k,u2,v2), and the dealer did not broadcast a 

corresponding reveal message, go to 3. 

 

2. If Pi views a message reveal(j,fj(x),gj(y)), check if it 

agrees with Pi’s shares: fi(j)=gj(i) and gi(j)=fj(i). If the 

check succeeds, broadcast “good” (i.e., I agree with 

the dealer). 

 

3. If at least n-t parties broadcasted “good” then use the 

shares that they have.  Otherwise they abort. 
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VSS using Bivariate polynomials – Step 4 
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 Assume dealer is honest 

 An honest PJ complains only if a corrupt Pi sends it 

incorrect values. But since the complaint of Pi contains 

good values, the dealer does not reveal PJ’s share. 

 

 If a corrupt Pi complains with incorrect values, dealer 

sends a reveal message of Pi’s shares, 

which passes the test of the n-t honest parties, 

which then send n-t good messages 

and therefore output the correct shares which enable 

to recover the secret.   
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VSS Security proof - Sketch 
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 Assume dealer is corrupt 

 Suppose Pi,Pk are honest and receive inconsistent 

shares: fj(k)gk(j), or gj(k)fk(j). 

 Both parties complain, and therefore dealer must send 

reveal message or else no honest party broadcasts good. 

 The shares are used only if n-t parties output “good”. 

Some might be corrupt, but at least (n-t)-t=t+1 of them are 

honest. 

 Their polynomials agree with those revealed by the 

dealer. 

 These t+1 polynomials define a unique bivariate poly, 

which defines the secret. 

 That’s all that we need. 37 

VSS Security proof - Sketch 
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 Inputs are shared using VSS. 

 Therefore dealer deals consistent shares.  

 

 Addition gates are trivial. 

 

 Multiplication gates: 

 Must ensure that each party multiplies its own shares. 

 Must use a VSS to perform the sharing defined by the 

protocol. 

 The full description and proof are quite intricate. 
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The full protocol 
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 No public key operations are needed! 

 Input sharing step is more complicated than in the 

semi-honest case 

 Length of messages increases by O(n) 

 But this protocol is run only once, and has O(1) rounds. 

 

 Multiplication gates 

 Requires the use of a VSS  

 Message length increases by O(n) 
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Overhead 
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