
page 1

Secure Computation

Unconditionally Secure Multi-

Party Computation

Benny Pinkas

June 10, 2014

 “Completeness theorems for non-cryptographic fault-

tolerant distributed computation”

 M. Ben-Or, S. Goldwasser, A. Wigderson, 1988.

 Published concurrently with “Multiparty unconditionally secure

protocols” Chaum, Crepau, Damgard.

 Published after the results of Yao and GMW, with the

motivation of obtaining results without any intractability

assumptions.

2

Overview

June 10, 2014

 “Completeness theorems for non-cryptographic fault-

tolerant distributed computation”

 M. Ben-Or, S. Goldwasser, A. Wigderson, 1988.

 The setting

 A complete synchronous network of n parties

 Each party Pi has an input xi

 Communication channels between parties are secure

 The solution for the malicious case requires a broadcast

channel

3

Overview

June 10, 2014

 The function f(x1,…,xn) is represented by an

arithmetic circuit over a field F (say, modulo a large

prime)

 Contains addition and multiplication gates in F

 Can be more compact than a Boolean circuit

 We need only care about deterministic functionalities:

 A randomized functionality f(r; x1,…,xn) can be

computed by each party providing (ri,xi), and the circuit

computing and using r=r1…rn.

4

Overview (contd.)

June 10, 2014

 The construction provides unconditional security

 Against semi-honest adversaries controlling t<n/2

parties

 Against malicious adversaries controlling t<n/3 parties

 Unlike the GMW construction, which is based on

cryptographic assumptions

 oblivious transfer

 ZK proofs

5

Overview (contd.)

June 10, 2014

 t-out-of-n secret sharing

 Given a secret s, provide shares to n parties, s.t.
 Any t shares enable the reconstruction of the secret

 Any t-1 shares reveal nothing about the secret

 Consider 2-out-of-n secret sharing.
 Define a line which intersects the

 Y axis at S

 The shares are points on the line

 Any two shares define S

 A single share reveals nothing

6

Main tool – secret sharing

s

1 2 3

June 10, 2014

 Fact: Let F be a field. Any d+1 pairs (ai , bi) define a

unique polynomial P of degree ≤ d, s.t. P(ai)=bi.

(assuming d < |F|).

 Shamir’s secret sharing scheme:

 The secret S is an element in a field (say, in Zp).

 Define a polynomial P of degree t-1 by choosing

random coefficients a1,…,at-1 and defining

P(x) = at-1x
 t-1+…+a1x+S.

 The share of party Pj is (j, P(j)).

7

t-out-of-n secret sharing

June 10, 2014

 Reconstructing the secret:

 Assume we have P(x1),…,P(xt).

 Use Lagrange interpolation to compute the unique

polynomial of degree ≤ t-1 which agrees with these

points.

 Output the free coefficient of this polynomial.

 Lagrange interpolation

 P(x) = ∑i=1..t P(xi)·Li(x)

 where Li(x)=∏j≠i(x-xj) / ∏j≠i(xi-xj)

 (Note that Li (xi)=1, Li (xj)=0 for j≠i.)

8

t-out-of-n secret sharing

June 10, 2014

 Perfect secrecy: Any t-1 shares give no information about
the secret, Pr(secret=s | P(1),…, P(t-1)) = Pr(secret=s).

 Proof:

 Intuition from 2-out-of-n secret sharing:

 The polynomial is generated by choosing a random
coefficient a and defining P(x)= ax+s.

 Suppose that the adversary knows the share P(1)=a1+s.

 For any value of s, there is a one-to-one correspondence
between a and P(1) (a=P(1)-s).

 Since a is uniformly distributed, so is P(1)

 Therefore P(1) does not reveal any
information about s.

9

Properties of Shamir’s secret sharing

June 10, 2014

 Perfect secrecy: Any t-1 shares give no information
about the secret.

 Proved by showing that, even given S, any t-1 shares are
uniformly distributed.

 Proof:
 The polynomial is generated by choosing a random

polynomial of degree t-1, subject to P(0)=S.

 Suppose that the adversary knows the shares P(1),…,P(t-1).

 The values of P(1),…,P(t-1) are defined by an invertible set
of t-1 linear equations of a1,…,at-1, s.

 P(i) = j=1,…,t-1 (i)
j aj + s.

10

Properties of Shamir’s secret sharing

June 10, 2014

 Proof (cont.):

 The values of P(1),…,P(t-1) are defined by an invertible

set of t-1 linear equations of a1,…,at-1, s.

 P(xi) = j=1,…,t-1 (i)
j aj + s.

 For any possible value of s, there is a exactly one set of

values of a1,…,at-1 which gives the values P(1),…,P(t-1).

 This set of a1,…,at-1 can be found by solving a linear

system of equations.

 Since a1,…,at-1 are uniformly distributed, so are the values

of P(x1),…,P(xt-1).

 ⇒P(x1),…,P(xt-1) reveal nothing about s.

11

Properties of Shamir’s secret sharing

June 10, 2014

 Ideal size:

 Each share is the same size as the secret.

 Homomorphic property:

 Suppose P(1),…,P(n) are shares of S,

 and P’(1),…,P’(n) are shares of S’,

 then P(1)+P’(1),… ,P(n)+P’(n) are shares of S+S’.

12

Additional properties of Shamir’s secret

sharing

June 10, 2014

 Input sharing phase

 Computation phase

 Output reconstruction phase

 Main idea:

 for every wire, the parties will know a secret sharing of

the value which passes through that wire.

13

The BGW protocol

June 10, 2014

 Let t<n/2 be a bound on the number of corrupt

parties.

 Each Pi generates a (t+1)-out-of-n sharing of its input

xi.

 Namely, chooses a polynomial fi() of degree t over F,

s.t. fi(0)=xi

 Any subset of t shares does not leak any information

about xi

 t+1 shares reveal xi

 Pi sends to each Pj the value fi(j).

 The protocol continues from the input wires to the

output wires. 14

BGW protocol – input phase

June 10, 2014

 All parties participate in the computation of every

gate

 Already know a sharing of its input wires

 Must generate a sharing of the output wire

 Addition gate: c = a+b

 Must generate a polynomial fc() of degree t, which is

random except for fc(0)=a+b. Each Pi learns fc(i).

 Define fc(·) = fa(·)+fb(·)

 Each Pi sets ci=ai+bi=fa(i)+fb(i)=fc(i)

 No interaction is needed!

 What about multiplication gates?

15

Computation phase

June 10, 2014

 Easier to first describe the output phase than to

describe the protocol for multiplication gates

 Output wires

 If output wire yi must be learned by Pi, then all parties

send it their shares of yi.

 Pi reconstructs the secret and learns the output value.

16

Output phase

June 10, 2014

 c = a·b. First attempt:

 Define fab(·) = fa(·)·fb(·).

 Each Pi computes ai·bi = fa(i)·fb(i) = fab(i).

 Indeed, fab(0) = a·b.

 But the degree of fab is 2t, and fab is not a random

polynomial.

 Interpolation:

 fab is of degree 2t<n, and fab(0) = a·b.

 Therefore Lagrange coefficients r1,…,rn s.t.

fab(0) = a·b = r1fab(1)+…rnfab(n) = r1·a1b1+…rn·anbn.

 Each ri is easily computable.

17

Computation phase – multiplication gates

June 10, 2014

 Each Pi

 Has ai·bi

 Creates a random polynomial gi(·) of degree t s.t.

gi(0)=ai· bi

 Consider g(x)=i=1…nri·gi(x)

 of degree t

 g(0)=i=1…nri·gi(0) = i=1…n ri· aibi = i=1…n ri· fab(i) = a· b.

 This is exactly the polynomial we need.

 Must provide each Pi with a share of g().

18

Computation phase – multiplication gates

June 10, 2014

 Each Pi

 Creates a random polynomial gi(·) of degree t s.t.

gi(0)=ai·bi

 Define g(x)=i=1…nri·gi(x), of degree t. g(0)=i=1…nri·gi(0) =

a·b.

 Pi sends to every Pj the value gi(j)

 Every Pj receives g1(j),…,gn(j), computes g(j)=

i=1…nri·gi(j)

 This is the desired sharing of a· b.

19

Computation phase – multiplication gates

June 10, 2014

 Correctness is straightforward

 Overhead:

 O(n2) messages for every multiplication gate

 # of rounds linear in depth of circuit (where only

multiplication gates count)

20

Properties

June 10, 2014

 Main idea: every set of t players, receives in each

round values which are t-wise independent, and

therefore uniformly distributed.

 Therefore no information about the actual wire values

are leaked.

21

Security

June 10, 2014

 Recall what we showed

 In (t+1)-out-of-n secret sharing, any t shares are

uniformly distributed, independently of the secret.

 Suppose first that multiplication is computed by an

oracle (call this the fmult hybrid model)

 The simulator obtains the inputs and outputs of the t

corrupt parties

 The transcript of a party includes its input, randomness

used, all messages received.

22

Simulation based proof

June 10, 2014

 Adversary controls a set J of t < n/2 parties.

 The simulator:

 PiJ, set input zi=xi. PiJ, set input zi=0.

 Share inputs zi according to protocol.

 Addition gates: add shares as in protocol.

 Mult gates: provide PiJ with shares of a random

sharing of the value 0.

 Simulation is correct since t shares of any value are

uniformly distributed.

23

Simulation based proof

June 10, 2014

 Output stage:

 wire, the simulator already defined shares for all

PiJ.

 Let w be an output wire of PiJ. The simulator has the

output value yw, and the t shares of PiJ.

 The simulator interpolates the t-degree polynomial fw

going through these values. It then simulates receiving

the shares fw(i) from all PiJ.

 Let w be an output wire of PjJ. For all PiJ, the

simulator sends the corresponding share to Pj.
24

Simulation based proof

June 10, 2014

 Recall, the multiplication protocol

 Pi creates a random poly gi(·) of deg t s.t. gi(0)=ai·bi

 Pi sends to Pj the value gi(j), and receive shares gj(i)

 Pi computes its share as g(i)= j=1…nrj·gj(i).

 Simulation PiJ:

 Create a random poly gi(·) of deg t s.t. gi(0)=Pi’s share

 Send to every Pj the value gi(j)

 PjJ simulate receipt of a random share gj(i)

 Compute share of wire value as g(i)= j=1…nrj·gj(i)

25

Simulating the multiplication protocol

June 10, 2014

 Aka security against Byzantine adversaries

 Possible problems in using the previous protocol:

 When sharing its input, Pi might send values of a

polynomial of degree greater than t.

 As a result, different subsets of the clients might

recover different values as the secret.

 Parties might send incorrect shares

 How can we interpolate in this case?

 Protocol secure against t<n/3

26

Security against malicious parties

June 10, 2014

 Sharing stage

 Add elements to the shares so that parties are assured

to receive values of a polynomial of degree t (even if

the dealer is malicious)

 Recovery stage

 As long as t<n/3 shares are corrupt, use error

correction techniques to recover the secret.

 Based on the fact that Shamir’s secret sharing scheme

is a Reed-Solomon code, which can correct up to t<n/3

errors.

27

Major tool – Verifiable Secret Sharing (VSS)

June 10, 2014

 Reed-Solomon code

 A linear [n,k,d]-code, with k=t+1, and d=n-t.

 The message is (m0,…mt).

 Use it as the coefficients of a degree t polynomial, Pm.

 Codeword is Pm(1),…,Pm(n).

 Two codewords differ in at least d=n-t locations.

 efficient decoding correcting (n-t-1)/2 errors.

 If t<n/3, correcting up to t errors.

28

The Reed-Solomon code

June 10, 2014

 Usage:

 Let P() be a polynomial of degree t. (E.g., the polynomial

used for (t+1)-out-of-n secret sharing.)

 If instead of receiving P(1),P(2),…,P(n), we receive up

to t<n/3 corrupt values, can still recover P.

 (And in particular, recover P(0), the secret.)

 Conclusion:

 Can easily handle corrupt parties which send corrupt

shares.

 Need to focus on forcing the dealer to distribute shares

consistent with a t-degree polynomial.

29

Using the Reed-Solomon code

June 10, 2014

 f(x,y) = i=0…tj=0…t ai,j·x
i·yj

 Defined by (t+1)2 coefficients

 Claim: f(x,y) can be defined by t+1 univariate

polynomials:

 Given t+1 polynomials of degree t: f1(x),…,ft+1(x)

there exists a single bivariate polynomial of degree t

such that f(x,1)=f1(x), …, f(x,t+1)=ft+1(x)

30

Bivariate polynomials

f(x,1) = f1(x)

f(x,2) = f2(x)

f(x,3) = f3(x)
∶

June 10, 2014

 Dealer defines a random bivariate polynomial f(x,y)

of degree t, s.t. f(0,0)= secret.

 Sends to Pi the share fi(x)=f(x,i). (t-deg poly)

 By the claim, any t+1 shares suffice to reveal secret.

 Sends to Pi the dual share gi(x)=f(i,x).

 Will be used for checking shares received from other

parties

31

VSS using Bivariate polynomials - Step 1

(t+1)-out-of-n secret sharing

f(x,i) = fi(x)

f(i,x) = gi(x)

June 10, 2014

 Claim: subset J of size t, the shares and dual

shares of PiJ do not reveal the secret.

 Assume wlog J=1,2,…,t.

 f1(x),…,ft(x), each of degree t, enforce t·(t+1)

constraints of the bivariate polynomial f.

 g1(x),…,gt(x), each add another constraint.

 Total # of constraints is t(t+1)+t=t2+2t=(t+1)2-1. None of

them defines f(0,0) directly.

32

VSS using Bivariate polynomials

June 10, 2014

 Each party Pi:

 j, send fi(j) and gi(j) to Pj.

 j, let (uj,vj) the values received from Pj.

 If uj gi(j) or vj fi(j), then broadcast “complaint(i, j, fi(j),

gi(j))”.

33

fi(x)

gj(x) gi(x)

fj(x)

uj=fj(i)=gi(j)

vj=gj(i)=fi(j)

(the two values Pi was

supposed to receive)

whom should we

believe?

June 10, 2014

 The dealer:

 Upon receiving the message “complaint(i, j, fi(j), gi(j))”

sent by Pi,

 check that fi(j)=f(i,j) and that gi(j)=f(j,i).

 If the checks fail, broadcast polynomials:

reveal(i,fi(x),gi(x)).

 (Namely, if Pi sent an incorrect complaint, broadcast

the shares that it received from dealer.)

 Now, whom should the parties believe, Pi or the

dealer?

34

VSS using Bivariate polynomials – Step 3

June 10, 2014

 Each Pi

1. If Pi views two messages complaint(k,j,u1,v1) and

complaint(j,k,u2,v2), and the dealer did not broadcast a

corresponding reveal message, go to 3.

2. If Pi views a message reveal(j,fj(x),gj(y)), check if it

agrees with Pi’s shares: fi(j)=gj(i) and gi(j)=fj(i). If the

check succeeds, broadcast “good” (i.e., I agree with

the dealer).

3. If at least n-t parties broadcasted “good” then use the

shares that they have. Otherwise they abort.

35

VSS using Bivariate polynomials – Step 4

June 10, 2014

 Assume dealer is honest

 An honest PJ complains only if a corrupt Pi sends it

incorrect values. But since the complaint of Pi contains

good values, the dealer does not reveal PJ’s share.

 If a corrupt Pi complains with incorrect values, dealer

sends a reveal message of Pi’s shares,

which passes the test of the n-t honest parties,

which then send n-t good messages

and therefore output the correct shares which enable

to recover the secret.

36

VSS Security proof - Sketch

June 10, 2014

 Assume dealer is corrupt

 Suppose Pi,Pk are honest and receive inconsistent

shares: fj(k)gk(j), or gj(k)fk(j).

 Both parties complain, and therefore dealer must send

reveal message or else no honest party broadcasts good.

 The shares are used only if n-t parties output “good”.

Some might be corrupt, but at least (n-t)-t=t+1 of them are

honest.

 Their polynomials agree with those revealed by the

dealer.

 These t+1 polynomials define a unique bivariate poly,

which defines the secret.

 That’s all that we need. 37

VSS Security proof - Sketch

June 10, 2014

 Inputs are shared using VSS.

 Therefore dealer deals consistent shares.

 Addition gates are trivial.

 Multiplication gates:

 Must ensure that each party multiplies its own shares.

 Must use a VSS to perform the sharing defined by the

protocol.

 The full description and proof are quite intricate.

38

The full protocol

June 10, 2014

 No public key operations are needed!

 Input sharing step is more complicated than in the

semi-honest case

 Length of messages increases by O(n)

 But this protocol is run only once, and has O(1) rounds.

 Multiplication gates

 Requires the use of a VSS

 Message length increases by O(n)

39

Overhead

June 10, 2014

