Advanced Topics in Cryptography

Lecture 12 Private Information Retrieval (PIR)

Benny Pinkas

Related papers

▶ PIR

▶ B. Chor, E. Kushilevitz, O. Goldreich, M. Sudan: Private Information Retrieval. J. ACM 45(6): 965-981 (1998)

Private Information Retrieval (PIR)

- A special case of secure two-party computation
 - One party (aka sender, server) has a large database.
 - The other party (aka receiver, client) wants to learn a specific item in the database, while hiding its query from the database owner.
 - For example, a patent database, or web access.
- The model:
 - Sender has N bits, $b_1,...,b_N$.
 - Receiver has a query i∈ [1,N].
 - Receiver learns b_i (and possibly additional information)
 - Sender learns nothing.
 - ▶ The communication is sublinear, i.e. o(N).
- (This model is not very realistic, but is convenient since it's the most basic form of PIR)

Results

- Unconditional security
- Unconditional privacy, with a **single** server, requires $\Omega(N)$ communication and is therefore inefficient [CGKS]
 - A transcript c=T(x,i) is called "possible" if for a database x and a user interested in i there is a positive probability for c.
 - Fix *i*. For every possible value of the database there is a value for *c*. But since the communication is smaller than N bits, the total number of possible transcripts c is smaller than 2^N .
 - Therefore there are two values of the pair (database, query): (x,i) and (y,i), s.t. c is possible for both.
 - By the privacy requirement, *c* must be possible for (*x*,*i*) for all possible values of i, and similarly for every (*y*,*i*) (otherwise database owner learns *i*).
 - Since $x\neq y$, there is an index j for which $x\neq y$.
 - But c is possible for both (x,j) and (y,j). A contradiction! (since the receiver's output is a function of c alore) 17, 2014 page 4

Results

- Unconditional security
 - consider a setting where
 - k≥ 2 servers know the database
 - Servers do not collude. No single server learns about i.
 - The client can send different queries to different servers
- Results [CGKS and subsequent work]
 - ▶ 2 servers: O(N¹/³) communication
 - ▶ K servers: $O(N^{1/\Omega\{k\}})$ communication, or even a bit better.
 - ▶ log N servers: Poly(log(N)) communication.

Two-server PIR

- Best result: N^{1/3} communication. We will show a protocol with N^{1/2} communication.
- \blacktriangleright There is a simple protocol with O(N) communication:
 - Receiver picks a random vector V₀ of length N.
 - It sets V_1 to be equal to V_0 , except for the bit in location i, whose value is reversed.
 - It sends V₀ to Server₀, and V₁ to Server₁.
 - Server₀ sends to R a bit c₀, which is the xor of the bits b_i, for which the corresponding bit in V₀ is 1. Namely c₀= \oplus V_{0,i}b_i.
 - Server₁ sends a bit c¹, computed using V₁.
 - The receiver computes $b_i = c^0 \oplus c^1$.
 - Privacy: Each server sees a random vector.
 - Protocol seems suboptimal since communication from receiver to client is much higher than in the other direction.

Two-server PIR with $O(N^{1/2})$ communication

- Suppose N=m×m.
- Database is { b_{i,j} }_{1≤i,j≤m}
- Receiver is interested in b_{α,β}
- It picks a random vector V₀ of length m.
- V_1 is equal to V_0 with bit α reversed.
- Sends V₀ to S₀ and V₁ to S₁
- ▶ S_0 computes and sends the corresponding xor of every column: $c_{i=1...m}^0 \bigvee_{j=1...m} \bigvee_{0,i} b_{i,j}$ (m results in total)
- S₁ computes and sends similar values c¹_i with V₁
- The receiver ignores all values but c_{β}^{0} , c_{β}^{1} . Computes $b_{\alpha,\beta} = c_{\beta}^{0} \oplus c_{\beta}^{1}$ (but can also compute all $b_{\alpha,j}$).
- What else does the receiver learn?

Four-server PIR with $O(N^{1/2})$ communication (same communication as in the two server case)

- Here the receiver can only compute $b_{\alpha,\beta}$ (and some additional xors of inputs)
- ▶ Four servers, $S_{0,0}$, $S_{0,1}$, $S_{1,0}$, $S_{1,1}$. Each sends only O(1) bits.
- ▶ Database is $\{b_{i,j}\}_{1 \le i,j \le m}$. Receiver is interested in $b_{\alpha,\beta}$.
- Receiver picks random V_0^R, V_0^C of m bits each. Computes V_1^R, V_1^C by reversing bit α in V_0^R , and bit β in V_0^C .
- ▶ Sends vectors V_0^R, V_0^C to $S_{0,0}$, vectors V_0^R, V_1^C to $S_{0,1}$, etc.
- ▶ Each $S_{a,b}$ computes the xor of the bits whose coordinates correspond to "1" values in $V_a^r \times V_b^c$, and returns the result.
- ▶ The receiver computes the xor of the bits it receives...
- Correctness? Communication? Privacy?

Four-server PIR with $O(N^{1/3})$ communication

- We showed a four-server PIR where the receiver sends O(N^{1/2}) bits and each server sends O(1) bits.
- We can use this protocol as a subroutine:
 - ▶ Given a database of size N, divide it to N¹/³ smaller databases of size N²/³ each.
 - Apply the previous protocol to all of them in parallel. The receiver constructs sets V^R,V^C for the database which stores the bit it is interested in, and uses these sets for all databases.
 - The receiver sends $O((N^{2/3})^{1/2})=O(N^{1/3})$ bits.
 - ► Each sender returns $N^{1/3} \cdot O(1) = O(N^{1/3})$ bits.
 - The receiver learns one value from every database.
- (why didn't this approach work with the two server protocol?)

 June 17, 2014 page 9

Computational PIR [Kushilevitz Ostrovsky]

- Security is not unconditional, but rather depends on a computational assumption about the hardness of some problem
- Enables to run PIR with a single server (unlike the infeasibility result for unconditional PIR)

Computational PIR

- We will show computational PIR based on the existence of additively homomorphic encryption
- Additively homomorphic encryption
 - Semantically secure public key encryption
 - 1. Given E(x) it is possible to compute, without knowledge of the secret key, $E(c \cdot x)$, for every c.
 - 2. Given E(x) and E(y), it is possible to compute E(x+y)
- We actually need a weaker property
- Can be implemented based on the hardness of ElGamal encryption, Quadratic Residuosity, etc.
- We might talk more about additively homomorphic encryption in future lectures.

Computational PIR: basic scheme

- ▶ Suppose $N = s \times t$.
- Database is { b_{i,j} }_{1≤i≤s, 1≤j≤t}
- Receiver is interested in b_{α,β}
- Receiver computes a vector V of size t: (E(e₁),...,E(et)), where e₁=0 if j≠ β, and e₁=1.
- Receiver sends V to sender.
- Sender computes, for every row $1 \le i \le s$, $c_i = \sum_{j=1}^t E(e_j \cdot b_{i,j}) = E(\sum_{j=1}^t e_j \cdot b_{i,j}) = b_{i,\beta} (O(N) \text{ exponen.})$
- ▶ Sender sends $c_1,...,c_s$ to receiver. Receiver learns c_α .
- ▶ Setting $s=t=N^{1/2}$ results in $O(N^{1/2})$ communication.
- Is this secure? Can we do better?

Computational PIR: reducing the communication via recursion

- In the final step the sender sends s values, while the receiver is interested in only one of them.
 - They can run a PIR in which the receiver learns this value!
- Set t=N^{1/3}. Run the previous protocol without the final step.
 - $O(t)=O(N^{1/3})$ communication for this step.
 - At the end of the protocol the sender has $N_1 = N^{2/3}$ values (each of length k, which is the length of the encryption).
 - The parties run the previous protocol k times (for each bit of the answers), setting $s=t=(N_1)^{1/2}=N^{1/3}$.
 - Communication: $R \Rightarrow S$: $kN^{1/3}+k^2N^{1/3}=O(N^{1/3})$
 - $S \Rightarrow R: k^2 N^{1/3} = O(N^{1/3})$

Computational PIR: continuing the recursion

- ightharpoonup Start from $t = N^{1/4}$.
- ▶ There are N^{3/4} answers, each of length k.
- Run the previous protocol on these answers, once for every bit of the answer (a total of k times).
 - The communication overhead is $O(k^3N^{1/3})$ bits.
- ▶ In the general case
 - The recursion has L steps
 - Start from $t=N^{1/(L+1)}$
 - The total communication is $O(N^{1/(L+1)} \cdot k^L)$
 - ▶ Setting L=O((log N / log k)^{1/2}) results in $N^{1/(L+1)} = k^L$, and total communication $2^{O(\sqrt{(\log N \log k)})}$
- There is another PIR protocol with polylogN comm.

Sender privacy

PIR does not prevent receiver from learning more than a single element of the database.

PIR

- Sender learns nothing about the query (i.e., about i).
- Receiver might learn more than the item it is interested in (b_i).
- Communication is sublinear in N.

- 1-out-of-N Oblivious transfer
 - Sender learns nothing about the query (i.e., about i).
 - Receiver learns nothing but the result of its query (b_i).
 - Communication can be linear in N.

Is it possible to get the best in both worlds?

Symmetric PIR (SPIR)

SPIR is PIR with sender privacy:

- Sender learns nothing about the query (i.e., about i).
- Receiver learns nothing but the result of its query.
- Communication is sublinear in N.

OT + PIR = SPIR

- Recall 1-out-of-N OT:
 - 2logN keys are used to encrypt N items.
 - Receiver uses logN invocations of OT to learn logN keys.
 - All N encrypted items are sent to the receiver, who can decrypt on of them.
 - The last step can be replaced by PIR.

