Advanced Topics in Cryptography

Lecture 2

Benny Pinkas

Based on slides of Yehuda Lindell

Zero Knowledge

- Prover P, verifier V, language L
- P proves that $x \in L$ without revealing anything
 - Completeness: V always accepts when honest P and V interact
 - Soundness: V accepts with negligible probability when x∉L, for any P*
 - Computational soundness: only holds when \mathbf{P}^* is polynomial-time

Zero-knowledge:

There exists a simulator S such that S(x) is indistinguishable from a real proof execution

ZK Proof of Knowledge

- Prover P, verifier V, relation R
- P proves that it knows a witness w for which (x,w)∈R without revealing anything
 - The proof is zero knowledge as before
 - There exists an extractor **K** that can obtain from any \mathbf{P}^* , a **w** such that $(\mathbf{x}, \mathbf{w}) \in \mathbf{R}$, with the same probability that \mathbf{P}^* convinces **V**.

• Equivalently:

The protocol securely computes the functionality
f_{zk}((x,w),x) = (-,R(x,w))

Zero Knowledge

- An amazing concept; everything can be proven in zero knowledge
- Central to fundamental feasibility results of cryptography (e.g., GMW)
- But, can it be efficient?
 - It seemed that zero-knowledge protocols for "interesting languages" are complicated and expensive
- Zero knowledge is often avoided at significant cost

Sigma Protocols

A way to obtain efficient zero knowledge

- Many general tools
- Many interesting languages can be proven with a sigma protocol

An Example – Schnorr DLOG

- Let G be a group of order q, with generator g
- ▶ P and V have input $h \in G$. P has w such that $g^w = h$
- P proves that to V that it knows DLOG_g(h)
 - P chooses a random r and sends a=g^r to V
 - V sends P a random $e \in \{0, I\}^t$
 - P sends z=r+ew mod q to V
 - V checks that g^z = ah^e
- Completeness

$$g^z = g^{r+ew} = g^r(g^w)^e = ah^e$$

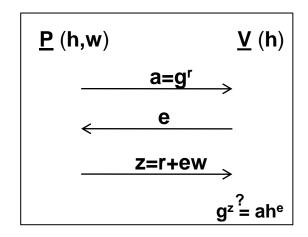
Schnorr's Protocol

Proof of knowledge

- Assume P can answer two queries e and e' for the same a
- Then, it holds that g^z = ah^e, g^{z'}=ah^{e'}
- Thus, g^zh^{-e} = g^z h^{-e'} and g^{z-z'}=h^{e-e'}
- Therefore $h = g^{(z-z')/(e-e')}$
- That is: DLOGg(h) = (z-z')/(e-e')

Conclusion:

 If P can answer with probability greater than 1/2^t, then it must know the dlog



Schnorr's Protocol

- What about zero knowledge? This does not seem easy.
- But ZK holds if the verifier sends a <u>random</u> challenge e
- This property is called "Honest-verifier zero knowledge"
 - The simulation:
 - Choose a random **z** and **e**, and compute $\mathbf{a} = \mathbf{g}^{\mathbf{z}}\mathbf{h}^{-\mathbf{e}}$
 - Clearly, (a,e,z) have the same distribution as in a real run, and g^z=ah^e
- This is not a very strong guarantee, but we will see that it yields efficient general ZK.

Definitions

- Sigma protocol template
 - **Common input: P** and **V** both have **x**
 - ▶ **Private input:** P has w such that $(x,w) \in R$
 - Protocol:
 - > P sends a message a
 - ▶ **V** sends a <u>random</u> **t**-bit string **e**
 - P sends a reply z
 - ► V accepts based solely on (x,a,e,z)

Definitions

Completeness: as usual

Special soundness:

There exists an algorithm A that given any x and pair of transcripts (a,e,z),(a,e',z') with e≠e' outputs w s.t. (x,w)∈R

Special honest-verifier ZK

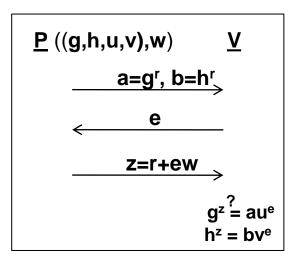
There exists an M that given any x and e outputs (a,e,z) which is distributed exactly like a real execution where V sends e

Sigma Protocol for proving a DH Tuple

- Relation R of Diffie-Hellman tuples
 - ▶ $(g,h,u,v) \in \mathbf{R}$ iff there exists w s.t. $u=g^w$ and $v=h^w$
 - Useful in many protocols
- This is a proof of membership, not of knowledge
- Protocol
 - P chooses a random r and sends a=g^r, b=h^r
 - V sends a random e
 - P sends z=r+ew mod q
 - ▶ V checks that g^z=au^e, h^z=bv^e

Sigma Protocol DH Tuple

- Completeness: as in DLOG
- Special soundness:
 - Given (a,b,e,z),(a,b,e',z'), we have g^z=au^e,g^{z'}=au^{e'},h^z=bv^e,h^{z'}=bv^{e'} and so like in DLOG on both
 - w = (z-z')/(e-e')
- Special HVZK
 - Given (g,h,u,v) and e, choose random z and compute
 - ▶ a = g^zu^{-e}
 - ▶ b = h^zv^{-e}



Basic Properties

- Any sigma protocol is an interactive proof with soundness error 2^{-t}
- Properties of sigma protocols are invariant under parallel composition
- Any sigma protocol is a proof of knowledge with error 2^{-t}
 - The difference between the probability that P* convinces V and the probability that an extractor K obtains a witness is at most 2^{-t}
 - Proof needs some work

Tools for Sigma Protocols

- Prove compound statements
 - AND, OR, subset
- ZK from sigma protocols
 - Can first make a compound sigma protocol and then compile it
- ZKPOK from sigma protocols

AND of Sigma Protocols

- To prove the AND of multiple statements
 - Run all in parallel
 - Can use the same verifier challenge **e** in all
- Sometimes it is possible to do better than this
 - Statements can be batched
 - E.g. proving that many tuples are DDH can be done in much less time than running all proofs independently
 - Batch all into one tuple and prove

This is more complicated

- Given two statements and two appropriate Sigma protocols, wish to prove that at least one is true, without revealing which
- The solution an ingenious idea from [CDS]
 - Using the simulator, if e is known ahead of time it is possible to cheat
 - We construct a protocol where the prover can cheat in one out of the two proofs

• The template for proving x_0 or x_1 :

- P sends two first messages (a₀,a₁)
- **V** sends a single challenge **e**
- **P** replies with
 - ► Two challenges e₀,e₁ s.t. e₀⊕e₁ = e
 - Two final messages z₀,z₁
- ▶ V accepts if $e_0 \oplus e_1 = e$ and $(a_0, e_0, z_0), (a_1, e_1, z_1)$ are both accepting
- How does this work?

- **P** sends two first messages (a_0, a_1)
 - Suppose that **P** has a witness for \mathbf{x}_0 (but not for \mathbf{x}_1)
 - P chooses a random e₁ and runs SIM to get (a₁,e₁,z₁)
 - **P** sends (a_0, a_1)
- **V** sends a single challenge **e**
- **P** replies with e_0, e_1 s.t. $e_0 \oplus e_1 = e_1$ and with z_0, z_1
 - **P** already has $\mathbf{z}_{\mathbf{I}}$ and can compute $\mathbf{z}_{\mathbf{0}}$ using the witness

Soundness

- If P doesn't know a witness for $\mathbf{x}_{\mathbf{l}}$, he can only answer for a single $\mathbf{e}_{\mathbf{l}}$
- This means that \mathbf{e} defines a single challenge \mathbf{e}_0 , like in a regular proof

Special soundness

- ▶ Relative to first message (a_0,a_1) , and two different e,e', it holds that either $e_0 \neq e'_0$ or $e_1 \neq e'_1$ (because $e_0 \oplus e_1 = e$ and $e'_0 \oplus e'_1 = e'$).
- Thus, we will obtain two different continuations for at least one of the statements, and from the special soundness of a single protocol it is possible to compute a witness for that statement, which is also a witness for the OR statement.

Honest verifier ZK

- Can choose both e₀,e₁, so no problem
- Note: it is possible to prove an OR of different statements using different protocols

OR of Many Statements

• Prove k out of n statements x_1, \dots, x_n

- A = set of indices that prover knows how to prove; the other indices are denoted as B
- Use secret sharing with threshold n-k
- Field elements 1,2,...,n, polynomial **f** with free coefficient **s**
- Share of s for party P_i: f(i)
- Prover
 - For every $i \in B$, prover generates (a_i, e_i, z_i) using SIM
 - For every $\mathbf{j} \in \mathbf{A}$, prover generates $\mathbf{a}_{\mathbf{j}}$ as in protocol
 - Prover sends (a₁,...,a_n)

OR of Many Statements

- Prover sent (a₁,...,a_n)
- \blacktriangleright Verifier sends a random field element $e\!\in\!F$
- Prover finds the polynomial f of degree n-k passing through all (i,e_i) and (0,e) (for i∈B)
 - ▶ The prover computes $e_j = f(j)$ for every $j \in A$
 - The prover computes z_j as in the protocol, based on transcript a_j,e_j
- Soundness follows because there are |F| possible vectors and the prover can only answer one

General Compound Statements

- This can be generalized to any monotone formula (meaning that the formula contains AND/OR but no negations)
 - See Cramer, Damgård, Schoenmakers, Proofs of partial knowledge and simplified design of witness hiding protocols, CRYPTO'94.