Advanced Topics in Cryptography

Lecture 2

Benny Pinkas

Based on slides of Yehuda Lindell

Zero Knowledge

- Prover P, verifier V, language L
- P proves that $x \in L$ without revealing anything
- Completeness: \mathbf{V} always accepts when honest \mathbf{P} and \mathbf{V} interact
- Soundness: \mathbf{V} accepts with negligible probability when $\mathbf{x} \notin \mathbf{L}$, for any \mathbf{P}^{*}
- Computational soundness: only holds when \mathbf{P}^{*} is polynomial-time
- Zero-knowledge:
- There exists a simulator \mathbf{S} such that $\mathbf{S}(\mathbf{x})$ is indistinguishable from a real proof execution

ZK Proof of Knowledge

- Prover P, verifier V, relation R
- P proves that it knows a witness w for which $(\mathrm{x}, \mathrm{w}) \in \mathrm{R}$ without revealing anything
- The proof is zero knowledge as before
* There exists an extractor \mathbf{K} that can obtain from any \mathbf{P}^{*},a w such that $(\mathbf{x}, \mathbf{w}) \in \mathbf{R}$, with the same probability that \mathbf{P}^{*} convinces V.
- Equivalently:
- The protocol securely computes the functionality

$$
\mathbf{f}_{\mathbf{z k}}((\mathbf{x}, \mathrm{w}), \mathbf{x})=(-, \mathbf{R}(x, w))
$$

Zero Knowledge

- An amazing concept; everything can be proven in zero knowledge
- Central to fundamental feasibility results of cryptography (e.g., GMW)
- But, can it be efficient?
- It seemed that zero-knowledge protocols for "interesting languages" are complicated and expensive
, Zero knowledge is often avoided at significant cost

Sigma Protocols

- A way to obtain efficient zero knowledge
- Many general tools
- Many interesting languages can be proven with a sigma protocol

An Example - Schnorr DLOG

- Let G be a group of order q, with generator g
- P and V have input $h \in G$. P has w such that $g^{w}=h$
- P proves that to V that it knows $\mathrm{DLOG}_{g}(\mathrm{~h})$
- \mathbf{P} chooses a random \mathbf{r} and sends $\mathbf{a}=\mathrm{g}^{\mathbf{r}}$ to \mathbf{V}
- \mathbf{V} sends \mathbf{P} a random $\mathbf{e} \in\{\mathbf{0}, \mathbf{I}\}^{\text {t }}$
- \mathbf{P} sends $\mathbf{z}=\mathbf{r}+e w \bmod \mathbf{q}$ to \mathbf{V}
- \mathbf{V} checks that $\mathbf{g}^{\mathbf{z}}=\mathbf{a h}{ }^{\mathrm{e}}$
- Completeness

$$
g^{z}=g^{r+e w}=g^{r}\left(g^{w}\right)^{e}=a h^{e}
$$

Schnorr's Protocol

- Proof of knowledge
- Assume \mathbf{P} can answer two queries \mathbf{e} and \mathbf{e}^{\prime} for the same a
> Then, it holds that $\mathbf{g z}^{\mathbf{z}}=\mathbf{a h}{ }^{\mathrm{e}}, \mathrm{g}^{z^{\prime}=}=\mathbf{a} \mathbf{h}^{\mathrm{e}^{\prime}}$
- Thus, $\mathbf{g}^{\mathbf{z}} \mathbf{h}^{-\mathrm{e}}=\mathbf{g}^{z^{\prime}} \mathbf{h}^{-\mathrm{e}^{\prime}}$ and $\mathbf{g}^{\mathbf{z}-\mathbf{z}^{\prime}}=\mathbf{h}^{\mathrm{e}-\mathrm{e}^{\prime}}$
* Therefore $\mathbf{h}=\mathbf{g}^{\left(\mathbf{z}-\mathbf{z}^{\prime}\right) /\left(\mathrm{e}-\mathrm{e}^{\prime}\right)}$

- That is: $\operatorname{DLOGg}(\mathbf{h})=\left(\mathbf{z - z} \mathbf{z}^{\prime}\right) /\left(\mathbf{e}-\mathbf{e}^{\prime}\right)$
- Conclusion:
- If \mathbf{P} can answer with probability greater than $\mathbf{I} / \mathbf{2}^{\mathbf{t}}$, then it must know the dlog

Schnorr's Protocol

- What about zero knowledge? This does not seem easy.
- But ZK holds if the verifier sends a random challenge e
- This property is called "Honest-verifier zero knowledge"
, The simulation:
- Choose a random \mathbf{z} and \mathbf{e}, and compute $\mathbf{a}=\mathbf{g}^{\mathbf{z}} \mathbf{h}^{-\mathbf{e}}$
- Clearly, (a,e,z) have the same distribution as in a real run, and $g^{z}=a^{e}$
- This is not a very strong guarantee, but we will see that it yields efficient general ZK.

Definitions

- Sigma protocol template
- Common input: \mathbf{P} and \mathbf{V} both have \mathbf{x}
- Private input: \mathbf{P} has \mathbf{w} such that $(\mathbf{x}, \mathbf{w}) \in \mathbf{R}$
- Protocol:
- \mathbf{P} sends a message \mathbf{a}
- \mathbf{V} sends a random \mathbf{t}-bit string \mathbf{e}
- \mathbf{P} sends a reply z
- \mathbf{V} accepts based solely on ($\mathbf{x}, \mathbf{a}, \mathbf{e}, \mathbf{z}$)

Definitions

- Completeness: as usual
- Special soundness:
- There exists an algorithm \mathbf{A} that given any \mathbf{x} and pair of transcripts ($\mathbf{a}, \mathbf{e}, \mathbf{z}$),($\left.\mathbf{a}, \mathbf{e}^{\prime}, \mathbf{z}^{\prime}\right)$ with $\mathbf{e}=\mathbf{e}^{\prime}$ outputs \mathbf{w} s.t. $(\mathbf{x}, \mathbf{w}) \in \mathbf{R}$
- Special honest-verifier ZK
* There exists an \mathbf{M} that given any \mathbf{x} and \mathbf{e} outputs ($\mathbf{a}, \mathbf{e}, \mathbf{z}$) which is distributed exactly like a real execution where \mathbf{V} sends \mathbf{e}

Sigma Protocol for proving a DH Tuple

- Relation R of Diffie-Hellman tuples
b $(\mathbf{g}, \mathbf{h}, \mathbf{u}, \mathbf{v}) \in \mathbf{R}$ iff there exists \mathbf{w} s.t. $\mathbf{u}=\mathbf{g}^{\mathbf{w}}$ and $\mathbf{v}=\mathbf{h}^{\mathbf{w}}$
, Useful in many protocols
- This is a proof of membership, not of knowledge
- Protocol
- \mathbf{P} chooses a random \mathbf{r} and sends $\mathbf{a}=\mathbf{g}^{r}, \mathbf{b}=\mathbf{h}^{\boldsymbol{r}}$
- \mathbf{V} sends a random \mathbf{e}
- \mathbf{P} sends $\mathbf{z = r} \mathbf{r e w} \bmod \mathbf{q}$
- \mathbf{V} checks that $\mathbf{g}^{\mathbf{z}}=\mathbf{a u} \mathbf{u}^{\mathrm{e}}, \mathbf{h}^{\mathbf{z}}=\mathbf{b v}^{\mathbf{e}}$

Sigma Protocol DH Tuple

- Completeness: as in DLOG
- Special soundness:
> Given (a,b,e,z),(a,b, e', z'), we have $g^{z}=a u^{e}, g^{z^{\prime}}=a u^{e^{\prime}}, h^{\mathrm{z}}=b v^{\mathrm{e}}, \mathrm{h}^{z^{\prime}}=b v^{\mathrm{e}^{\prime}}$ and so like in DLOG on both
b $w=\left(z-z^{\prime}\right) /\left(e-e^{\prime}\right)$

$$
\begin{aligned}
& \underline{\mathbf{P}}((\mathrm{g}, \mathrm{~h}, \mathrm{u}, \mathrm{v}), \mathrm{w}) \quad \underline{\mathrm{V}} \\
& \xrightarrow{a=g^{r}, b=h^{r}} \\
& \text { e } \\
& \leftarrow e \mathrm{e} \\
& \begin{array}{l}
g^{2}{ }^{?}=a u^{e} \\
h^{2}=b v^{e}
\end{array}
\end{aligned}
$$

- Special HVZK
> Given (g,h,u,v) and e, choose random z and compute
> $\mathrm{a}=\mathrm{g}^{\mathrm{z}} \mathrm{u}^{-e}$
, $b=h^{z} v^{-e}$

Basic Properties

- Any sigma protocol is an interactive proof with soundness error 2^{-t}
- Properties of sigma protocols are invariant under parallel composition
- Any sigma protocol is a proof of knowledge with error 2-t
* The difference between the probability that \mathbf{P}^{*} convinces \mathbf{V} and the probability that an extractor \mathbf{K} obtains a witness is at most 2^{-t}
- Proof needs some work

Tools for Sigma Protocols

- Prove compound statements
- AND, OR, subset
- ZK from sigma protocols
- Can first make a compound sigma protocol and then compile it
- ZKPOK from sigma protocols

AND of Sigma Protocols

- To prove the AND of multiple statements
- Run all in parallel
- Can use the same verifier challenge \mathbf{e} in all
- Sometimes it is possible to do better than this
- Statements can be batched
- E.g. proving that many tuples are DDH can be done in much less time than running all proofs independently
- Batch all into one tuple and prove

OR of Sigma Protocols

- This is more complicated
- Given two statements and two appropriate Sigma protocols, wish to prove that at least one is true, without revealing which
- The solution - an ingenious idea from [CDS]
- Using the simulator, if \mathbf{e} is known ahead of time it is possible to cheat
* We construct a protocol where the prover can cheat in one out of the two proofs

OR of Sigma Protocols

- The template for proving x_{0} or x_{1} :
- \mathbf{P} sends two first messages $\left(\mathbf{a}_{0}, \mathbf{a}_{1}\right)$
- V sends a single challenge \mathbf{e}
- \mathbf{P} replies with
- Two challenges $\mathbf{e}_{0}, \mathbf{e}_{\mathbf{1}}$ s.t. $\mathbf{e}_{0} \oplus \mathbf{e}_{\mathbf{1}}=\mathbf{e}$
- Two final messages $\mathbf{z}_{\mathbf{0}}, \mathbf{z}_{\mathbf{I}}$
- \mathbf{V} accepts if $\mathbf{e}_{0} \oplus \mathbf{e}_{\mathbf{I}}=\mathbf{e}$ and $\left(\mathbf{a}_{0}, \mathbf{e}_{0}, \mathbf{z}_{0}\right),\left(\mathbf{a}_{1}, \mathbf{e}_{1}, \mathbf{z}_{\mathbf{I}}\right)$ are both accepting
- How does this work?

OR of Sigma Protocols

- \mathbf{P} sends two first messages $\left(\mathbf{a}_{0}, \mathbf{a}_{1}\right)$
- Suppose that \mathbf{P} has a witness for \mathbf{x}_{0} (but not for \mathbf{x}_{1})
- \mathbf{P} chooses a random \mathbf{e}_{1} and runs SIM to get $\left(\mathbf{a}_{1}, \mathbf{e}_{1}, \mathbf{z}_{1}\right)$
- \mathbf{P} sends $\left(\mathbf{a}_{0}, \mathbf{a}_{\mathbf{1}}\right)$
- \mathbf{V} sends a single challenge \mathbf{e}
- \mathbf{P} replies with $\mathrm{e}_{0}, \mathrm{e}_{1}$ s.t. $\mathrm{e}_{0} \oplus \mathrm{e}_{1}=\mathrm{e}$ and with $\mathrm{z}_{0}, \mathrm{z}_{1}$
- \mathbf{P} already has $\mathbf{z}_{\mathbf{I}}$ and can compute $\mathbf{z}_{\mathbf{0}}$ using the witness
- Soundness
- If P doesn't know a witness for \mathbf{x}_{1}, he can only answer for a single \mathbf{e}_{1}
- This means that \mathbf{e} defines a single challenge \mathbf{e}_{0}, like in a regular proof

OR of Sigma Protocols

- Special soundness
- Relative to first message ($\mathbf{a}_{0}, \mathbf{a}_{1}$), and two different $\mathbf{e}, \mathbf{e}^{\prime}$, it holds that either $\mathbf{e}_{0} \neq \mathbf{e}^{\prime}{ }_{0}$ or $\mathbf{e}_{1} \neq \mathbf{e}^{\prime}{ }_{1}$ (because $\mathbf{e}_{0} \oplus \mathbf{e}_{1}=\mathbf{e}$ and $\mathbf{e}^{\prime}{ }_{0} \oplus \mathbf{e}^{\prime}{ }_{1}=\mathbf{e}^{\prime}$).
- Thus, we will obtain two different continuations for at least one of the statements, and from the special soundness of a single protocol it is possible to compute a witness for that statement, which is also a witness for the OR statement.
- Honest verifier ZK
b Can choose both $\mathbf{e}_{0}, \mathbf{e}_{1}$, so no problem
- Note: it is possible to prove an OR of different statements using different protocols

OR of Many Statements

- Prove k out of n statements x_{1}, \ldots, x_{n}
- $\mathbf{A}=$ set of indices that prover knows how to prove; the other indices are denoted as \mathbf{B}
- Use secret sharing with threshold $n-k$
- Field elements I,2,..,n, polynomial \mathbf{f} with free coefficient s
- Share of \boldsymbol{s} for party $\mathbf{P}_{\mathrm{i}}: \mathbf{f}(\mathrm{i})$
- Prover
- For every $\mathbf{i} \in \mathbf{B}$, prover generates $\left(\mathbf{a}_{\mathbf{i}}, \mathbf{e}_{\mathbf{i}}, \mathbf{z}_{\mathbf{i}}\right)$ using SIM
- For every $\mathbf{j} \in \mathbf{A}$, prover generates $\mathbf{a}_{\mathbf{j}}$ as in protocol
- Prover sends $\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{n}}\right)$

OR of Many Statements

- Prover sent $\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)$
- Verifier sends a random field element $e \in F$
- Prover finds the polynomial f of degree $n-k$ passing through all $\left(\mathrm{i}, \mathrm{e}_{\mathrm{i}}\right)$ and $(0, \mathrm{e})$ (for $\mathrm{i} \in \mathrm{B}$)
- The prover computes $\mathbf{e}_{\mathbf{j}}=\mathrm{f}(\mathrm{j})$ for every $\mathbf{j} \in \mathbf{A}$
- The prover computes $\mathbf{z}_{\mathbf{j}}$ as in the protocol, based on transcript $\mathrm{a}_{\mathrm{j}}, \mathrm{e}_{\mathrm{j}}$
- Soundness follows because there are |F| possible vectors and the prover can only answer one

General Compound Statements

- This can be generalized to any monotone formula (meaning that the formula contains AND/OR but no negations)
- See Cramer, Damgård, Schoenmakers, Proofs of partial knowledge and simplified design of witness hiding protocols, CRYPTO'94.

