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 Prover P, verifier V, language L 

 P proves that xL without revealing anything 

 Completeness: V always accepts when honest P and V 

interact 

 Soundness: V accepts with negligible probability when xL, 

for any P* 

 Computational soundness: only holds when P* is polynomial-time 

 Zero-knowledge: 

 There exists a simulator S such that S(x) is indistinguishable 

from a real proof execution 
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 Prover P,  verifier V,  relation R 

 P proves that it knows a witness w for which (x,w)R 

without revealing anything 

 The proof is zero knowledge as before 

 There exists an extractor K that can obtain from any P*,a w 

such that (x,w)R, with the same probability that P* convinces 

V. 

 

 Equivalently: 

 The protocol securely computes the functionality 

 fzk((x,w),x) = (-,R(x,w)) 
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 An amazing concept; everything can be proven in zero 

knowledge 

 Central to fundamental feasibility results of cryptography 
(e.g., GMW) 

 

 But, can it be efficient? 

 It seemed that zero-knowledge protocols for “interesting 

languages” are complicated and expensive 

 Zero knowledge is often avoided at significant cost 
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 A way to obtain efficient zero knowledge 

 Many general tools 

 Many interesting languages can be proven with a sigma 

protocol 
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 Let G be a group of order q, with generator g 

 P and  V have input hG.  P has w such that gw = h 

 P proves that to V that it knows DLOGg(h) 

 P chooses a random r and sends a=gr to V 

 V sends P a random e0,1t  

 P sends z=r+ew mod q to V 

 V checks that gz = ahe 

 

 Completeness 

 gz = gr+ew = gr(gw)e = ahe 
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 Proof of knowledge 

 Assume P can answer two queries e and 

e for the same a 

 Then, it holds that gz = ahe, gz=ahe 

 Thus, gzh-e = gzh-e and gz-z=he-e 

 Therefore h = g(z-z)/(e-e) 

 That is: DLOGg(h) = (z-z)/(e-e) 

 Conclusion: 

 If P can answer with probability greater 

than 1/2t, then it must know the dlog 
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 What about zero knowledge? This does not seem easy. 

 But ZK holds if the verifier sends a random challenge e 

 This property is called “Honest-verifier zero knowledge” 

 The simulation: 

 Choose a random z and e, and compute a = gzh-e 

 Clearly, (a,e,z) have the same distribution as in a real run, and 

gz=ahe 

 

 This is not a very strong guarantee, but we will see that it 

yields efficient general ZK. 
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 Sigma protocol template 

 Common input: P and V both have x 

 Private input: P has w such that (x,w)R 

 

 Protocol: 

 P sends a message a 

 V sends a random t-bit string e 

 P sends a reply z 

 V accepts based solely on (x,a,e,z) 
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 Completeness: as usual 

 

 Special soundness: 

 There exists an algorithm A that given any x and pair of 

transcripts (a,e,z),(a,e,z) with ee outputs w s.t. (x,w)R 

 

 Special honest-verifier ZK 

 There exists an M that given any x and e outputs (a,e,z) 

which is distributed exactly like a real execution where V 

sends e 
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 Relation R of Diffie-Hellman tuples 

 (g,h,u,v) R iff there exists w s.t. u=gw and v = hw 

 Useful in many protocols 

 This is a proof of membership, not of knowledge 

 

 Protocol 

 P chooses a random r and sends a=gr,  b=hr 

 V sends a random e 

 P sends z=r+ew mod q 

 V checks that gz=aue, hz=bve 
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 Completeness: as in DLOG 

 Special soundness: 

 Given (a,b,e,z),(a,b,e,z), we have 

gz=aue,gz=aue,hz=bve,hz=bve and so like 

in DLOG on both 

 w = (z-z)/(e-e) 

 Special HVZK 

 Given (g,h,u,v) and e, choose random z 

and compute 

 a = gzu-e 

 b = hzv-e 
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 Any sigma protocol is an interactive proof with 

soundness error 2-t 

 

 Properties of sigma protocols are invariant under parallel 

composition 

 

 Any sigma protocol is a proof of knowledge with error 2-t 

 The difference between the probability that P* convinces V 

and the probability that an extractor K obtains a witness is at 

most 2-t 

 Proof needs some work 
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 Prove compound statements 

 AND, OR, subset 

 

 ZK from sigma protocols 

 Can first make a compound sigma protocol and then compile it 

 

 ZKPOK from sigma protocols 
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 To prove the AND of multiple statements 

 Run all in parallel 

 Can use the same verifier challenge e in all 

 

 Sometimes it is possible to do better than this 

 Statements can be batched 

 E.g. proving that many tuples are DDH can be done in much 

less time than running all proofs independently 

 Batch all into one tuple and prove 
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 This is more complicated 

 Given two statements and two appropriate Sigma protocols, 

wish to prove that at least one is true, without revealing which 

 

 The solution – an ingenious idea from [CDS] 

 Using the simulator, if e is known ahead of time it is possible to 

cheat 

 We construct a protocol where the prover can cheat in one 

out of the two proofs 
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 The template for proving x0 or x1: 

 P sends two first messages (a0,a1) 

 V sends a single challenge e 

 

 P replies with  

 Two challenges e0,e1 s.t.  e0e1 = e 

 Two final messages z0,z1 

 

 V accepts if e0e1 = e and (a0,e0,z0),(a1,e1,z1) are both 

accepting 

 

 How does this work? 
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 P sends two first messages (a0,a1) 

 Suppose that P has a witness for x0 (but not for x1)  

 P chooses a random e1 and runs SIM to get (a1,e1,z1) 

 P sends (a0,a1) 

 V sends a single challenge e 

 P replies with e0,e1  s.t.  e0e1 = e  and  with z0,z1 

 P already has z1 and can compute z0 using the witness 

 Soundness 

 If P doesn’t know a witness for x1, he can only answer for a single e1 

 This means that e defines a single challenge e0, like in a regular proof 
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 Special soundness 

 Relative to first message (a0,a1), and two different e,e, it holds 

that either e0 e0 or e1 e1 (because e0e1 = e and e0e1 = e). 

 Thus, we will obtain two different continuations for at least 

one of the statements, and from the special soundness of a 

single protocol it is possible to compute a witness for that 

statement, which is also a witness for the OR statement. 

 Honest verifier ZK 

 Can choose both e0,e1, so no problem 

 Note: it is possible to prove an OR of different 

statements using different protocols 
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 Prove k out of n statements x1,…,xn  

 A = set of indices that prover knows how to prove; the other 

indices are denoted as B 

 Use secret sharing with threshold n-k 

 Field elements 1,2,…,n, polynomial f with free coefficient s 

 Share of s for party Pi:  f(i) 

 Prover 

 For every iB, prover generates (ai,ei,zi) using SIM 

 For every jA, prover generates aj as in protocol 

 Prover sends (a1,…,an)  
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 Prover sent (a1,…,an) 

 Verifier sends a random field element eF 

 Prover finds the polynomial f of degree n-k passing 

through all (i,ei) and (0,e) (for iB) 

 The prover computes ej=f(j) for every jA 

 The prover computes zj as in the protocol, based on transcript 

aj,ej  
 

 Soundness follows because there are |F| possible vectors 

and the prover can only answer one 
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 This can be generalized to any monotone formula 

(meaning that the formula contains AND/OR but no 

negations) 

 See Cramer, Damgård, Schoenmakers, Proofs of partial 

knowledge and simplified design of witness hiding protocols, 

CRYPTO'94.  
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