Advanced Topics in Cryptography

Lecture 3

Benny Pinkas

Based on slides of Yehuda Lindell

Sigma Protocol for proving a DH Tuple

- Relation R of Diffie-Hellman tuples
 - ▶ $(g,h,u,v) \in \mathbb{R}$ iff there exists w s.t. $u=g^w$ and $v=h^w$
 - Useful in many protocols
- ▶ This is a proof of membership, not of knowledge
- Protocol
 - P chooses a random r and sends a=gr, b=hr
 - V sends a random e
 - P sends z=r+ew mod q
 - V checks that g^z=au^e, h^z=bv^e

Sigma Protocol DH Tuple

- Completeness: as in DLOG
- Special soundness:
 - ▶ Given (a,b,e,z),(a,b,e',z'), we have g^z=au^e,g^{z'}=au^{e'},h^z=bv^e,h^{z'}=bv^{e'} and so like in DLOG on both
 - w = (z-z')/(e-e')

Special HVZK

- Given (g,h,u,v) and e, choose random z and compute
 - \rightarrow a = $g^z u^{-e}$
 - $b = h^z v^{-e}$

Tools for Sigma Protocols

- Prove compound statements
 - ▶ AND, OR, subset
- ZK from sigma protocols
 - ▶ Can first make a compound sigma protocol and then compile it
- ZKPOK from sigma protocols

AND of Sigma Protocols

- ▶ To prove the AND of multiple statements
 - Run all in parallel
 - ▶ Can use the same verifier challenge e in all
- Sometimes it is possible to do better than this
 - Statements can be batched
 - E.g. proving that many tuples are DDH can be done in much less time than running all proofs independently
 - Batch all into one tuple and prove

OR of Sigma Protocols

This is more complicated

• Given two statements and two appropriate Sigma protocols, wish to prove that at least one is true, without revealing which

▶ The solution – an ingenious idea from [CDS]

- Using the simulator, if **e** is known ahead of time it is possible to cheat
- We construct a protocol where the prover can cheat in one out of the two proofs

OR of Sigma Protocols

- ▶ The template for proving x_0 or x_1 :
 - **P** sends two first messages (a_0,a_1)
 - V sends a single challenge e
 - P replies with
 - Two challenges e_0, e_1 s.t. $e_0 \oplus e_1 = e_1$
 - ightharpoonup Two final messages $\mathbf{z_0}, \mathbf{z_1}$
 - V accepts if $e_0 \oplus e_1 = e$ and $(a_0, e_0, z_0), (a_1, e_1, z_1)$ are both accepting
- How does this work?

OR of Sigma Protocols

- **P** sends two first messages (a_0,a_1)
 - Suppose that **P** has a witness for x_0 (but not for x_1)
 - ▶ P chooses a random e_1 and runs SIM to get (a_1,e_1,z_1)
 - ightharpoonup P sends (a_0,a_1)
- V sends a single challenge e
- ▶ **P** replies with e_0, e_1 s.t. $e_0 \oplus e_1 = e$ and with z_0, z_1
 - \triangleright **P** already has $\mathbf{z_1}$ and can compute $\mathbf{z_0}$ using the witness
- Soundness
 - If P doesn't know a witness for x_1 , he can only answer for a single e_1
 - This means that e defines a single challenge e_0 , like in a regular proof

OR of Many Statements

- Prove k out of n statements $x_1,...,x_n$
 - A = set of indices that prover knows how to prove; the other indices are denoted as **B**. |A|=k. |B|=n-k.
 - Use secret sharing with threshold n-k+l
 - Field elements 1,2,...,n. Polynomial **f** of degree n-k
 - ▶ Share for party P_i : f(i)

Prover

- ▶ For every $i \in B$, prover generates (a_i, e_i, z_i) using SIM
- For every $j \in A$, prover generates a_i as in protocol
- Prover sends $(a_1,...,a_n)$

OR of Many Statements

- Prover sent $(a_1,...,a_n)$
- Verifier sends a random field element e∈F
- ▶ Prover finds the (only) polynomial f of degree n-k passing through all (i,e $_i$) and (0,e) (for i∈B)
 - ▶ The prover computes $e_i = f(j)$ for every $j \in A$
 - The prover computes $\mathbf{z_j}$ as in the protocol, based on transcript $\mathbf{a_i, e_i}$
- Soundness follows because there are |F| possible vectors and the prover can only answer one

General Compound Statements

- This can be generalized to any monotone formula (meaning that the formula contains AND/OR but no negations)
 - See Cramer, Damgård, Schoenmakers, Proofs of partial knowledge and simplified design of witness hiding protocols, CRYPTO'94.

- A tool: commitment schemes
- Enables to commit to a chosen value while keeping it secret, with the ability to reveal the committed value later.
- ▶ A commitment has two properties:
 - Binding: After sending the commitment, it is impossible for the committing party to change the committed value.
 - Hiding: By observing the commitment, it is impossible to learn what is the committed value. (Therefore the commitment process must be probabilistic.)
- It is possible to have unconditional security for any one of these properties, but not for both.

The basic idea

Have V first commit to its challenge e using a perfectly-hiding commitment

The protocol

- ightharpoonup sends the first message α of the commit protocol
- **V** sends a commitment $c=Com_{\alpha}(e;r)$
- P sends a message a
- **V** opens the commitment by sending (**e,r**)
- **P** checks that $c=Com_{\alpha}(e;r)$ and if yes sends a reply **z**
- V accepts based on (x,a,e,z)

Soundness:

The perfectly hiding commitment reveals nothing about **e** and so soundness is preserved

Zero knowledge

- In order to simulate:
 - Send a' generated by the simulator, for a random e'
 - Receive V's decommitment to e
 - \triangleright Run the simulator again with **e**, rewind **V** and send **a**
 - □ Repeat until **V** decommits to **e** again
 - Conclude by sending z
- Analysis...

Pedersen Commitments

- Highly efficient perfectly-hiding commitments (two exponentiations for string commit)
 - Parameters: generator g, order q
 - ▶ Commit protocol (commit to x):
 - \blacktriangleright Receiver chooses random **k** and sends **h**= g^k
 - Sender sends c=g^rh^x, for random r
 - Hiding:
 - For every **x,y** there exist **r,s** s.t. **r+kx = s+ky mod q**
 - **Binding:**
 - If sender can open commitment in two ways, i.e. find (x,r), (y,s) s.t. $g^rh^x=g^sh^y$, then k=(r-s)/(y-x) mod q

Efficiency of ZK

- Using Pedersen commitments, the entire DLOG proof costs only 5 additional group exponentiations
 - In Elliptic curve groups this is very little

- Is the previous protocol a proof of knowledge?
 - It seems not to be
 - The extractor for the Sigma protocol needs to obtain two transcripts with the same **a** and different **e**
 - The prover may choose its first message **a** differently for every commitment string.
 - But in this protocol the prover sees a commitment to **e** before sending **a**.
 - So if the extractor changes e, the prover changes a

- Solution: use a trapdoor (equivocal) commitment scheme
 - Given a trapdoor, it is possible to open the commitment to any value
- Pedersen has this property given the discrete log k of h, can decommit to any value

 - To decommit to y, find s such that r+kx = s+ky
 - This is easy if k is known: compute $s = r+k(x-y) \mod q$

▶ The basic idea

Have **V** first commit to its challenge **e** using a perfectly-hiding trapdoor (equivocal) commitment

The protocol

- P sends the first message α of the commit protocol (e.g., including h in the case of Pedersen commitments).
- **V** sends a commitment $c=Com_{\alpha}(e;r)$
- P sends a message a
- V sends (e,r)
- P checks that $c=Com_{\alpha}(e;r)$ and if yes sends the **trapdoor** for the commitment and **z**
- **V** accepts if the **trapdoor** is correct and (**x,a,e,z**) is accepting

- Why does this help?
 - ▶ **Zero-knowledge** remains the same
 - **Extraction:** after verifying the proof once, the extractor obtains **k** and can rewind back to the decommitment of **c** and send any (**e'**,**r'**)
- Efficiency:
 - Just 6 exponentiations (very little)

ZK and Sigma Protocols

- We typically want zero knowledge, so why bother with sigma protocols?
 - There are many useful general transformations
 - ▶ E.g., parallel composition, compound statements
 - The ZK and ZKPOK transformations can be applied on top of the above, so obtain transformed ZK
 - It is much harder to prove ZK than Sigma
 - ▶ ZK distributions and simulation
 - Sigma: only HVZK and special soundness

Using Sigma Protocols and ZK

- Prove that the El Gamal encryption (u,v) under public-key (g,h) is to the value m
 - ▶ By the definition of El Gamal encryption: $u=g^r$, $v=h^r \cdot m$
 - Thus (g,h,u,v/m) is a DH tuple
 - So, given (**g,h,u,v,m**), just prove that (**g,h,u,v/m**) is a DH tuple

Another application: Efficient Coin Tossing

- \triangleright P₁ chooses a random x, sends (g,h,g^r,h^rx)
- ▶ P₁ ZK-proves that it knows the encrypted value
 - Suffices to prove that it knows the discrete log of h
- ▶ P₂ chooses a random y and sends to P₁
- P_I sends x (without decommitting)
- ▶ P₁ ZK-proves that encrypted value was x
- Both parties output x+y
- Cost: O(I) exponentiations

Prove Knowledge of Committed Value

- ▶ Relation: $((h,c),(x,r)) \in R$ iff $c=g^rh^x$
- Sigma protocol:
 - P chooses random α , β and sends $a=h^{\alpha}g^{\beta}$
 - V sends a random e
 - P sends $u=\alpha+ex$, $v=\beta+er$
 - V checks that $h^u g^v = ac^e$
- Completeness:
 - $h^{u}g^{v} = h^{\alpha + ex}g^{\beta + er} = h^{\alpha}g^{\beta}(h^{x}g^{r})^{e} = ac^{e}$

Pedersen Commitment Proof

Special soundness:

- Given (a,e,u,v),(a,e',u',v'), we have hugv = ace, hu'gv'= ace'
 Thus, hugvc-e = hu'gv'c-e'
 and hu-u'gv-v' = ce-e'
- Conclude: $\mathbf{x} = (\mathbf{u} \mathbf{u}')(\mathbf{e} \mathbf{e}')$ and $\mathbf{r} = (\mathbf{v} \mathbf{v}')(\mathbf{e} \mathbf{e}')$

Special HVZK

Given (g,h,h,c) and e, choose random u,v and compute $a = h^u g^v c^{-e}$

Proof of Pedersen Value

- Prove that the Pedersen committed value is x
- ▶ Relation: $((h,c,x),(r)) \in R$ iff $c=g^rh^x$
 - \triangleright Observe: $ch^{-x} = g^r$
 - Conclusion: just prove that you know the discrete log of ch-x
- Application: statistical coin tossing