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 Relation R of Diffie-Hellman tuples 

 (g,h,u,v) R iff there exists w s.t. u=gw and v = hw 

 Useful in many protocols 

 This is a proof of membership, not of knowledge 

 

 Protocol 

 P chooses a random r and sends a=gr,  b=hr 

 V sends a random e 

 P sends z=r+ew mod q 

 V checks that gz=aue, hz=bve 
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 Completeness: as in DLOG 

 Special soundness: 

 Given (a,b,e,z),(a,b,e,z), we have 

gz=aue,gz=aue,hz=bve,hz=bve and so like 

in DLOG on both 

 w = (z-z)/(e-e) 

 Special HVZK 

 Given (g,h,u,v) and e, choose random z 

and compute 

 a = gzu-e 

 b = hzv-e 
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Sigma Protocol DH Tuple 
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 Prove compound statements 

 AND, OR, subset 

 

 ZK from sigma protocols 

 Can first make a compound sigma protocol and then compile it 

 

 ZKPOK from sigma protocols 
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 To prove the AND of multiple statements 

 Run all in parallel 

 Can use the same verifier challenge e in all 

 

 Sometimes it is possible to do better than this 

 Statements can be batched 

 E.g. proving that many tuples are DDH can be done in much 

less time than running all proofs independently 

 Batch all into one tuple and prove 
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 This is more complicated 

 Given two statements and two appropriate Sigma protocols, 

wish to prove that at least one is true, without revealing which 

 

 The solution – an ingenious idea from [CDS] 

 Using the simulator, if e is known ahead of time it is possible to 

cheat 

 We construct a protocol where the prover can cheat in one 

out of the two proofs 
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 The template for proving x0 or x1: 

 P sends two first messages (a0,a1) 

 V sends a single challenge e 

 

 P replies with  

 Two challenges e0,e1 s.t.  e0e1 = e 

 Two final messages z0,z1 

 

 V accepts if e0e1 = e and (a0,e0,z0),(a1,e1,z1) are both 

accepting 

 

 How does this work? 
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 P sends two first messages (a0,a1) 

 Suppose that P has a witness for x0 (but not for x1)  

 P chooses a random e1 and runs SIM to get (a1,e1,z1) 

 P sends (a0,a1) 

 V sends a single challenge e 

 P replies with e0,e1  s.t.  e0e1 = e  and  with z0,z1 

 P already has z1 and can compute z0 using the witness 

 Soundness 

 If P doesn’t know a witness for x1, he can only answer for a single e1 

 This means that e defines a single challenge e0, like in a regular proof 
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 Prove k out of n statements x1,…,xn  

 A = set of indices that prover knows how to prove; the other 

indices are denoted as B.      |A|=k.  |B|=n-k. 

 Use secret sharing with threshold n-k+1 

 Field elements 1,2,…,n. Polynomial f of degree n-k 

 Share for party Pi:  f(i) 

 Prover 

 For every iB, prover generates (ai,ei,zi) using SIM 

 For every jA, prover generates aj as in protocol 

 Prover sends (a1,…,an)  
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 Prover sent (a1,…,an) 

 Verifier sends a random field element eF 

 Prover finds the (only) polynomial f of degree n-k passing 

through all (i,ei) and (0,e) (for iB) 

 The prover computes ej=f(j) for every jA 

 The prover computes zj as in the protocol, based on transcript 

aj,ej  
 

 Soundness follows because there are |F| possible vectors 

and the prover can only answer one 
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 This can be generalized to any monotone formula 

(meaning that the formula contains AND/OR but no 

negations) 

 See Cramer, Damgård, Schoenmakers, Proofs of partial 

knowledge and simplified design of witness hiding protocols, 

CRYPTO'94.  

 

12 

General Compound Statements 

March 11, 201 Advanced Topics in Cryptography 



 A tool: commitment schemes 

  Enables to commit to a chosen value while keeping it 

secret, with the ability to reveal the committed value later. 

 A commitment has two properties: 

 Binding: After sending the commitment, it is impossible for the 

committing party to change the committed value. 

 Hiding: By observing the commitment, it is impossible to learn 

what is the committed value. (Therefore the commitment 

process must be probabilistic.) 

 It is possible to have unconditional security for any one of 

these properties, but not for both. 
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 The basic idea 

 Have V first commit to its challenge e using a perfectly-hiding 

commitment 

 The protocol 

 P sends the first message  of the commit protocol 

 V sends a commitment c=Com(e;r) 

 P sends a message a 

 V opens the commitment by sending (e,r) 

 P checks that c=Com(e;r)  and if yes sends a reply z 

 V accepts based on (x,a,e,z) 
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 Soundness: 

 The perfectly hiding commitment reveals nothing about e and 

so soundness is preserved 

 

 Zero knowledge 

 In order to simulate: 

 Send a generated by the simulator, for a random e 

 Receive V’s decommitment to e 

 Run the simulator again with e, rewind V and send a 

 Repeat until V decommits to e again 

 Conclude by sending z 

 Analysis… 
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 Highly efficient perfectly-hiding commitments (two 

exponentiations for string commit) 

 Parameters: generator g, order q 

 Commit protocol (commit to x): 

 Receiver chooses random k and sends h=gk 

 Sender sends c=grhx, for random r 

 Hiding:  

 For every x,y there exist r,s s.t. r+kx = s+ky mod q 

 Binding: 

 If sender can open commitment in two ways, i.e. find (x,r),(y,s) s.t. 

grhx=gshy, then k = (r-s)/(y-x) mod q 
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 Using Pedersen commitments, the entire DLOG proof 

costs only 5 additional group exponentiations 

 In Elliptic curve groups this is very little 
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 Is the previous protocol a proof of knowledge? 

 It seems not to be  

 The extractor for the Sigma protocol needs to obtain two 

transcripts with the same a and different e 

 The prover may choose its first message a differently for every 

commitment string. 

 But in this protocol the prover sees a commitment to e before 

sending a. 

 So if the extractor changes e, the prover changes a 
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 Solution: use a trapdoor (equivocal) commitment scheme 

 Given a trapdoor, it is possible to open the commitment to any 

value 

 Pedersen has this property – given the discrete log k of h, 

can decommit to any value 

 Commit to x:  c = grhx 

 To decommit to y, find s such that r+kx = s+ky 

 This is easy if k is known: compute s = r+k(x-y) mod q 
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 The basic idea 

 Have V first commit to its challenge e using a perfectly-hiding 
trapdoor (equivocal) commitment 

 The protocol 

 P sends the first message  of the commit protocol (e.g., 
including h in the case of Pedersen commitments). 

 V sends a commitment c=Com(e;r) 

 P sends a message a 

 V sends (e,r) 

 P checks that c=Com(e;r)  and  if yes sends the trapdoor 
for the commitment and z 

 V accepts if the trapdoor is correct and (x,a,e,z) is accepting 
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ZKPOK from Sigma Protocols 
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 Why does this help? 

 Zero-knowledge remains the same 

 Extraction: after verifying the proof once, the extractor 

obtains k and can rewind back to the decommitment of c 

and send any (e,r) 

 

 Efficiency: 

 Just 6 exponentiations (very little) 
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 We typically want zero knowledge, so why bother with 

sigma protocols? 

 There are many useful general transformations 

 E.g., parallel composition, compound statements 

 The ZK and ZKPOK transformations can be applied on top of the 

above, so obtain transformed ZK 

 

 It is much harder to prove ZK than Sigma 

 ZK – distributions and simulation 

 Sigma: only HVZK and special soundness 
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 Prove that the El Gamal encryption (u,v) under public-key 

(g,h) is to the value m 

 By the definition of El Gamal encryption: u=gr, v=hrm 

 Thus (g,h,u,v/m) is a DH tuple 

 So, given (g,h,u,v,m), just prove that (g,h,u,v/m) is a DH 

tuple 
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 P1 chooses a random x, sends (g,h,gr,hrx) 

 P1 ZK-proves that it knows the encrypted value 

 Suffices to prove that it knows the discrete log of h 

 P2 chooses a random y and sends to P1 

 P1 sends x (without decommitting) 

 P1 ZK-proves that encrypted value was x 

 Both parties output x+y 

 

 Cost: O(1) exponentiations 
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 Relation: ((h,c),(x,r))R iff c=grhx 

 Sigma protocol: 

 P chooses random , and sends a=hg 

 V sends a random e 

 P sends u=+ex, v=+er 

 V checks that hugv = ace 

 

 Completeness: 

 hugv =h+exg+er= hg(hxgr)e=ace 
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 Special soundness: 

 Given (a,e,u,v),(a,e,u,v), we have hugv = 

ace, hugv = ace  

 Thus,  hugvc-e = hugv c-e  

 and     hu-ugv-v  = ce-e 

 Conclude: x = (u-u)(e-e)   and         

      r  = (v-v)(e-e) 
 

 Special HVZK 

 Given (g,h,h,c) and e, choose random 

u,v and compute              a = hugvc-e 
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Pedersen Commitment Proof 

)h,c),(x,r)(( P V 

a=hg 

e 

u=+ex, 

v=+er 

hugv = ace 
? 

March 11, 201 Advanced Topics in Cryptography 



 Prove that the Pedersen committed value is x 

 Relation: ((h,c,x),(r))R iff c=grhx 

 Observe: ch-x = gr 

 Conclusion: just prove that you know the discrete log of ch-x 

 

 Application: statistical coin tossing 
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