Advanced Topics in Cryptography

Lecture 3

Benny Pinkas

Based on slides of Yehuda Lindell

Sigma Protocol for proving a DH Tuple

- Relation R of Diffie-Hellman tuples
* $(\mathbf{g}, \mathbf{h}, \mathbf{u}, \mathbf{v}) \in \mathbf{R}$ iff there exists \mathbf{w} s.t. $\mathbf{u}=\mathbf{g}^{\mathbf{w}}$ and $\mathbf{v}=\mathbf{h}^{\mathbf{w}}$
, Useful in many protocols
- This is a proof of membership, not of knowledge
- Protocol
- \mathbf{P} chooses a random \mathbf{r} and sends $\mathbf{a}=\mathbf{g}^{r}, \mathbf{b}=\mathbf{h}^{\boldsymbol{r}}$
- \mathbf{V} sends a random \mathbf{e}
- \mathbf{P} sends $\mathbf{z = r} \mathbf{r e w} \bmod \mathbf{q}$
- \mathbf{V} checks that $\mathbf{g}^{\mathbf{z}}=\mathbf{a u}^{\mathrm{e}}, \mathbf{h}^{\mathbf{z}}=\mathbf{b v}^{\mathbf{e}}$

Sigma Protocol DH Tuple

- Completeness: as in DLOG
- Special soundness:
> Given (a,b,e,z),(a,b, e', z'), we have $g^{z}=a u^{e}, g^{z^{\prime}}=a u^{e^{\prime}}, h^{\mathrm{z}}=b v^{\mathrm{e}}, \mathrm{h}^{z^{\prime}}=b v^{\mathrm{e}^{\prime}}$ and so like in DLOG on both
b $w=\left(z-z^{\prime}\right) /\left(e-e^{\prime}\right)$

$$
\begin{aligned}
& \underline{\mathbf{P}}((\mathrm{g}, \mathrm{~h}, \mathrm{u}, \mathrm{v}), \mathrm{w}) \quad \underline{\mathrm{V}} \\
& \xrightarrow{a=g^{r}, b=h^{r}} \\
& \longleftarrow \text { e } \\
& \xrightarrow{\mathrm{Z}=\mathrm{r}+\mathrm{ew}} \\
& \begin{array}{l}
g^{2}{ }^{?}=a u^{e} \\
h^{z}=b v^{e}
\end{array}
\end{aligned}
$$

- Special HVZK
> Given (g,h,u,v) and e, choose random z and compute
b $a=g^{z} u^{-e}$
, $b=h^{z} v^{-e}$

Tools for Sigma Protocols

- Prove compound statements
- AND, OR, subset
- ZK from sigma protocols
- Can first make a compound sigma protocol and then compile it
- ZKPOK from sigma protocols

AND of Sigma Protocols

- To prove the AND of multiple statements
- Run all in parallel
- Can use the same verifier challenge \mathbf{e} in all
- Sometimes it is possible to do better than this
- Statements can be batched
- E.g. proving that many tuples are DDH can be done in much less time than running all proofs independently
- Batch all into one tuple and prove

OR of Sigma Protocols

- This is more complicated
- Given two statements and two appropriate Sigma protocols, wish to prove that at least one is true, without revealing which
- The solution - an ingenious idea from [CDS]
- Using the simulator, if \mathbf{e} is known ahead of time it is possible to cheat
* We construct a protocol where the prover can cheat in one out of the two proofs

OR of Sigma Protocols

- The template for proving x_{0} or x_{1} :
- \mathbf{P} sends two first messages $\left(\mathbf{a}_{0}, \mathbf{a}_{1}\right)$
- \mathbf{V} sends a single challenge \mathbf{e}
- \mathbf{P} replies with
- Two challenges $\mathbf{e}_{0}, \mathbf{e}_{\mathbf{1}}$ s.t. $\mathbf{e}_{0} \oplus \mathbf{e}_{\mathbf{l}}=\mathbf{e}$
- Two final messages $\mathbf{z}_{\mathbf{0}}, \mathbf{z}_{\mathbf{I}}$
- \mathbf{V} accepts if $\mathbf{e}_{0} \oplus \mathbf{e}_{\mathbf{I}}=\mathbf{e}$ and $\left(\mathbf{a}_{0}, \mathbf{e}_{0}, \mathbf{z}_{0}\right),\left(\mathbf{a}_{1}, \mathbf{e}_{1}, \mathbf{z}_{\mathbf{I}}\right)$ are both accepting
- How does this work?

OR of Sigma Protocols

- \mathbf{P} sends two first messages $\left(\mathbf{a}_{0}, \mathbf{a}_{1}\right)$
- Suppose that \mathbf{P} has a witness for \mathbf{x}_{0} (but not for \mathbf{x}_{1})
- \mathbf{P} chooses a random \mathbf{e}_{1} and runs SIM to get $\left(\mathbf{a}_{1}, \mathbf{e}_{1}, \mathbf{z}_{1}\right)$
- \mathbf{P} sends $\left(\mathbf{a}_{0}, \mathbf{a}_{\mathbf{1}}\right)$
- \mathbf{V} sends a single challenge \mathbf{e}
- \mathbf{P} replies with $\mathrm{e}_{0}, \mathrm{e}_{1}$ s.t. $\mathrm{e}_{0} \oplus \mathrm{e}_{1}=\mathrm{e}$ and with $\mathrm{z}_{0}, \mathrm{z}_{1}$
- \mathbf{P} already has $\mathbf{z}_{\mathbf{I}}$ and can compute \mathbf{z}_{0} using the witness
- Soundness
- If P doesn't know a witness for \mathbf{x}_{1}, he can only answer for a single \mathbf{e}_{1}
- This means that \mathbf{e} defines a single challenge \mathbf{e}_{0}, like in a regular proof

OR of Many Statements

- Prove k out of n statements x_{1}, \ldots, x_{n}
- $\mathbf{A}=$ set of indices that prover knows how to prove; the other indices are denoted as B. $\quad|\mathrm{A}|=\mathrm{k} .|\mathrm{B}|=\mathrm{n}-\mathrm{k}$.
- Use secret sharing with threshold $n-k+I$
- Field elements I,2,...n. Polynomial f of degree n-k
- Share for party $\mathbf{P}_{\mathbf{i}}: \mathbf{f}(\mathrm{i})$
- Prover
- For every $\mathbf{i} \in \mathbf{B}$, prover generates $\left(\mathbf{a}_{\mathbf{i}}, \mathbf{e}_{\mathbf{i}}, \mathbf{z}_{\mathbf{i}}\right)$ using SIM
- For every $\mathbf{j} \in \mathbf{A}$, prover generates $\mathbf{a}_{\mathbf{j}}$ as in protocol
- Prover sends $\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{n}}\right)$

OR of Many Statements

- Prover sent $\left(\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right)$
- Verifier sends a random field element $e \in F$
- Prover finds the (only) polynomial fof degree n-k passing through all $\left(\mathrm{i}, \mathrm{e}_{\mathrm{i}}\right)$ and $(0, \mathrm{e})$ (for $\mathrm{i} \in \mathrm{B}$)
- The prover computes $\mathbf{e}_{\mathbf{j}}=\mathrm{f}(\mathrm{j})$ for every $\mathbf{j} \in \mathbf{A}$
- The prover computes $\mathbf{z}_{\mathbf{j}}$ as in the protocol, based on transcript $\mathrm{a}_{\mathrm{j}}, \mathrm{e}_{\mathrm{j}}$
- Soundness follows because there are |F| possible vectors and the prover can only answer one

General Compound Statements

- This can be generalized to any monotone formula (meaning that the formula contains AND/OR but no negations)
- See Cramer, Damgård, Schoenmakers, Proofs of partial knowledge and simplified design of witness hiding protocols, CRYPTO'94.

ZK from Sigma Protocols

- A tool: commitment schemes
- Enables to commit to a chosen value while keeping it secret, with the ability to reveal the committed value later.
- A commitment has two properties:
- Binding:After sending the commitment, it is impossible for the committing party to change the committed value.
- Hiding: By observing the commitment, it is impossible to learn what is the committed value. (Therefore the commitment process must be probabilistic.)
- It is possible to have unconditional security for any one of these properties, but not for both.

ZK from Sigma Protocols

- The basic idea
- Have V first commit to its challenge e using a perfectly-hiding commitment
- The protocol
- \mathbf{P} sends the first message α of the commit protocol
- \mathbf{V} sends a commitment $c=\operatorname{Com}_{\alpha}(\mathbf{e} ; \mathbf{r})$
- \mathbf{P} sends a message \mathbf{a}
- \mathbf{V} opens the commitment by sending (\mathbf{e}, \mathbf{r})
- \mathbf{P} checks that $\mathrm{c}=\mathbf{C o m}_{\alpha}(\mathbf{e} ; \mathbf{r})$ and if yes sends a reply \mathbf{z}
- \mathbf{V} accepts based on (x,a,e,z)

ZK from Sigma Protocols

- Soundness:

। The perfectly hiding commitment reveals nothing about e and so soundness is preserved

- Zero knowledge
- In order to simulate:
bend \mathbf{a}^{\prime} generated by the simulator, for a random \mathbf{e}^{\prime}
- Receive V's decommitment to e
- Run the simulator again with \mathbf{e}, rewind \mathbf{V} and send \mathbf{a}
\square Repeat until \mathbf{V} decommits to \mathbf{e} again
- Conclude by sending z
- Analysis...

Pedersen Commitments

- Highly efficient perfectly-hiding commitments (two exponentiations for string commit)
- Parameters: generator g, order q
- Commit protocol (commit to \mathbf{x}):
- Receiver chooses random \mathbf{k} and sends $\mathbf{h}=\mathbf{g}^{\mathbf{k}}$
- Sender sends $\mathbf{c}=\mathbf{g}^{\boldsymbol{r}} \mathbf{h}^{\mathbf{x}}$, for random \mathbf{r}
b Hiding:
- For every $\mathbf{x , y}$ there exist \mathbf{r}, \mathbf{s} s.t. $\mathbf{r} \mathbf{+} \mathbf{k x}=\mathbf{s}+\mathbf{k y} \mathbf{m o d} \mathbf{q}$
b Binding:
- If sender can open commitment in two ways, i.e. find $(\mathbf{x}, \mathbf{r}),(\mathbf{y}, \mathbf{s})$ s.t. $\mathbf{g}^{\mathbf{r}} \mathbf{h}^{\mathbf{x}}=\mathbf{g}^{\mathbf{s}} \mathbf{h}^{\mathbf{y}}$, then $\mathbf{k}=(\mathbf{r}-\mathbf{s}) /(\mathbf{y}-\mathbf{x}) \bmod \mathbf{q}$

Efficiency of ZK

- Using Pedersen commitments, the entire DLOG proof costs only 5 additional group exponentiations
- In Elliptic curve groups this is very little

ZKPOK from Sigma Protocols

- Is the previous protocol a proof of knowledge?
- It seems not to be
- The extractor for the Sigma protocol needs to obtain two transcripts with the same a and different \mathbf{e}
- The prover may choose its first message a differently for every commitment string.
- But in this protocol the prover sees a commitment to \mathbf{e} before sending a.
- So if the extractor changes e, the prover changes a

ZKPOK from Sigma Protocols

- Solution: use a trapdoor (equivocal) commitment scheme
- Given a trapdoor, it is possible to open the commitment to any value
- Pedersen has this property - given the discrete $\log \mathrm{k}$ of \mathbf{h}, can decommit to any value
- Commit to $\mathbf{x}: \mathbf{c}=\mathbf{g}^{r} \mathbf{h}^{\mathbf{x}}$
- To decommit to \mathbf{y}, find \mathbf{s} such that $\mathbf{r}+\mathbf{k x}=\mathbf{s}+\mathbf{k y}$
- This is easy if \mathbf{k} is known: compute $\mathbf{s}=\mathbf{r}+\mathbf{k}(\mathbf{x}-\mathbf{y}) \bmod \mathbf{q}$

ZKPOK from Sigma Protocols

- The basic idea
- Have V first commit to its challenge e using a perfectly-hiding trapdoor (equivocal) commitment
- The protocol
- \mathbf{P} sends the first message α of the commit protocol (e.g., including h in the case of Pedersen commitments).
- \mathbf{V} sends a commitment $c=\operatorname{Com}_{\alpha}(\mathbf{e} ; \mathbf{r})$
- \mathbf{P} sends a message \mathbf{a}
- V sends (e,r)
- \mathbf{P} checks that $\mathrm{c}=\operatorname{Com}_{\alpha}(\mathbf{e} ; \mathbf{r})$ and if yes sends the trapdoor for the commitment and \mathbf{z}
- \mathbf{V} accepts if the trapdoor is correct and ($\mathbf{x}, \mathbf{a}, \mathbf{e}, \mathbf{z}$) is accepting

ZKPOK from Sigma Protocols

ZKPOK from Sigma Protocols

- Why does this help?
- Zero-knowledge remains the same
- Extraction: after verifying the proof once, the extractor obtains \mathbf{k} and can rewind back to the decommitment of \mathbf{c} and send any ($\mathbf{e}^{\prime}, \mathbf{r}^{\prime}$)
- Efficiency:
b Just 6 exponentiations (very little)

ZK and Sigma Protocols

- We typically want zero knowledge, so why bother with sigma protocols?
- There are many useful general transformations
- E.g., parallel composition, compound statements
- The ZK and ZKPOK transformations can be applied on top of the above, so obtain transformed ZK
- It is much harder to prove ZK than Sigma
- ZK - distributions and simulation
- Sigma: only HVZK and special soundness

Using Sigma Protocols and ZK

- Prove that the El Gamal encryption (u,v) under public-key (g, h) is to the value m
* By the definition of El Gamal encryption: $\mathbf{u}=\mathbf{g}^{\mathbf{r}}, \mathbf{v}=\mathbf{h}^{\mathbf{r}} \cdot \mathbf{m}$
- Thus ($\mathbf{g}, \mathbf{h}, \mathbf{u}, \mathbf{v} / \mathbf{m}$) is a DH tuple
* So, given (g,h,u,v,m), just prove that (g,h,u,v/m) is a DH tuple

Another application: Efficient Coin Tossing

- P_{1} chooses a random x, sends ($\left.g, h, g^{r}, h^{r} x\right)$
- P_{1} ZK-proves that it knows the encrypted value
- Suffices to prove that it knows the discrete log of h
- P_{2} chooses a random y and sends to P_{1}
- P_{1} sends x (without decommitting)
- P_{1} ZK-proves that encrypted value was x
- Both parties output $x+y$
- Cost: O(I) exponentiations

Prove Knowledge of Committed Value

- Relation: $((\mathrm{h}, \mathrm{c}),(\mathrm{x}, \mathrm{r})) \in \mathrm{R}$ iff $\mathrm{c}=\mathrm{g}^{\mathrm{r}} \mathrm{h}^{\mathrm{x}}$
- Sigma protocol:
- P chooses random α, β and sends $\mathbf{a}=\mathbf{h}^{\alpha} \mathbf{g}^{\beta}$
- V sends a random \mathbf{e}
- P sends $\mathbf{u}=\alpha+e x, \mathbf{v}=\beta+e r$
- V checks that $\mathbf{h}^{\mathbf{u}} \mathbf{g}^{\mathrm{v}}=\mathbf{a c}{ }^{\mathbf{e}}$
- Completeness:
b $h^{u} g^{v}=h^{\alpha+e x} g^{\beta+e r}=h^{\alpha} g^{\beta}\left(h^{\times} g^{r}\right)^{e}=\mathbf{a c}^{e}$

Pedersen Commitment Proof

- Special soundness:
- Given ($\mathbf{a}, \mathbf{e}, \mathbf{u}, \mathbf{v}$), ($\left.\mathbf{a}, \mathbf{e}^{\prime}, \mathbf{u}^{\prime}, \mathbf{v}^{\prime}\right)$, we have $\mathbf{h}^{\mathbf{u}} \mathrm{g}^{\mathbf{v}}=$ $\mathbf{a c}^{\mathrm{e}}, \mathbf{h}^{\mathbf{u}^{\prime} \mathbf{g}^{\mathbf{v}}}{ }^{\prime}=\mathrm{ac}^{\mathrm{e}^{\prime}}$

and $\quad h^{u-u^{\prime}} g^{v-v^{\prime}}=\mathbf{c}^{\mathrm{e}-\mathrm{e}^{\prime}}$
- Conclude: $\quad \mathbf{x}=\left(\mathbf{u}-\mathbf{u}^{\prime}\right)\left(\mathbf{e}-\mathbf{e}^{\prime}\right)$ and

$$
\begin{aligned}
& \underline{\mathbf{P}}((\mathrm{h}, \mathrm{c}),(\mathrm{x}, \mathrm{r})) \quad \underline{\mathrm{V}} \\
& \xrightarrow{a=h^{\alpha} g^{\beta}} \\
& \longleftarrow \text { e } \\
& \xrightarrow[v=\beta+e r]{\mathbf{u}=\alpha+e x_{1}} \\
& h^{u} g^{v}{ }^{?}=a c^{e}
\end{aligned}
$$

- Special HVZK
- Given (g,h,h,c) and e, choose random \mathbf{u}, \mathbf{v} and compute $\quad \mathbf{a}=\mathbf{h}^{\mathbf{u}} \mathbf{g}^{\mathbf{v}} \mathbf{c}^{-\mathrm{e}}$

Proof of Pedersen Value

- Prove that the Pedersen committed value is x
- Relation: $((h, c, x),(r)) \in R$ iff $c=g^{r} h^{x}$
- Observe: $\mathbf{c h}^{-x}=\mathbf{g}^{r}$
- Conclusion: just prove that you know the discrete \log of $\mathbf{c h}^{-x}$
- Application: statistical coin tossing

