
March 18, 2014 Secure Computation page 1

Advanced Topics in Cryptography

Lecture 4

Benny Pinkas

Based on slides of Yehuda Lindell

 Let G be a group of order q, with generator g

 P and V have input hG. P has w such that gw = h

 P proves that to V that it knows DLOGg(h)

 P chooses a random r and sends a=gr to V

 V sends P a random e0,1t

 P sends z=r+ew mod q to V

 V checks that gz = ahe

2

An Example – Schnorr DLOG

March 18, 2014

),wh(P)h(V

a=gr

e

z=r+ew

gz = ahe
?

Secure Computation

 A tool: commitment schemes

 Enables to commit to a chosen value while keeping it

secret, with the ability to reveal the committed value later.

 A commitment has two properties:

 Binding: After sending the commitment, it is impossible for the

committing party to change the committed value.

 Hiding: By observing the commitment, it is impossible to learn

what is the committed value. (Therefore the commitment

process must be probabilistic.)

 It is possible to have unconditional security for any one of

these properties, but not for both.

3

ZK from Sigma Protocols

March 18, 2014 Secure Computation

 The basic idea

 Have V first commit to its challenge e using a perfectly-hiding

commitment

 The protocol

 P sends the first message  of the commit protocol

 V sends a commitment c=Com(e;r)

 P sends a message a

 V opens the commitment by sending (e,r)

 P checks that c=Com(e;r) and if yes sends a reply z

 V accepts based on (x,a,e,z)

4

ZK from Sigma Protocols

March 18, 2014 Secure Computation

 Soundness:

 The perfectly hiding commitment reveals nothing about e and

so soundness is preserved

 Zero knowledge

 In order to simulate:

 V commits. Send a generated by the simulator, for a

random e.

 Receive V’s decommitment to e

 Run the simulator again with e, rewind V and send a

 Repeat until V decommits to e again

 Conclude by sending z

 Analysis…

5

ZK from Sigma Protocols

March 18, 2014 Secure Computation

 Highly efficient perfectly-hiding commitments (two

exponentiations for string commit)

 Parameters: generator g, order q

 Commit protocol (commit to x):

 Receiver chooses random k and sends h=gk

 Sender sends c=grhx, for random r

 Hiding:

 For every x,y there exist r,s s.t. r+kx = s+ky mod q

 Binding:

 If sender can open commitment in two ways, i.e. find (x,r),(y,s) s.t.

grhx=gshy, then k = (r-s)/(y-x) mod q

7

Pedersen Commitments

March 18, 2014 Secure Computation

 Using Pedersen commitments, the entire DLOG proof

costs only 5 additional group exponentiations

 In Elliptic curve groups this is very little

8

Efficiency of ZK

March 18, 2014 Secure Computation

 Is the previous protocol a proof of knowledge?

 It seems not to be

 The extractor for the Sigma protocol needs to obtain two

transcripts with the same a and different e

 The prover may choose its first message a differently for every

commitment string.

 But in this protocol the prover sees a commitment to e before

sending a.

 So if the extractor changes e, the prover changes a

9

ZKPOK from Sigma Protocols

March 18, 2014 Secure Computation

 Solution: use a trapdoor (equivocal) commitment scheme

 Given a trapdoor, it is possible to open the commitment to any

value

 Pedersen has this property – given the discrete log k of h,

can decommit to any value

 Commit to x: c = grhx

 To decommit to y, find s such that r+kx = s+ky

 This is easy if k is known: compute s = r+k(x-y) mod q

10

ZKPOK from Sigma Protocols

March 18, 2014 Secure Computation

 The basic idea

 Have V first commit to its challenge e using a perfectly-hiding
trapdoor (equivocal) commitment (such as Pedersen)

 The protocol

 P sends the first message  of the commit protocol (e.g.,
including h in the case of Pedersen commitments).

 V sends a commitment c=Com(e;r)

 P sends a message a

 V sends (e,r)

 P checks that c=Com(e;r) and if correct sends z and also
the trapdoor for the commitment

 V accepts if the trapdoor is correct and (x,a,e,z) is accepting

11

ZKPOK from Sigma Protocols

March 18, 2014 Secure Computation

12

ZKPOK from Sigma Protocols

)x,w(P)x(V

Sigma msg a

(e,r)

(z,k)

Verify h=gk

Verify (a,e,z)

h=gk, random k

c=grhe

Verify c=grhe

March 18, 2014 Secure Computation

 Why does this help?

 Zero-knowledge remains the same

 Extraction: after verifying the proof once, the extractor

obtains k and can rewind back to the decommitment of c

and send any (e,r)

 Efficiency:

 Just 6 exponentiations (very little)

13

ZKPOK from Sigma Protocols

March 18, 2014 Secure Computation

 We typically want zero knowledge, so why bother with

sigma protocols?

 There are many useful general transformations

 E.g., parallel composition, compound statements

 The ZK and ZKPOK transformations can be applied on top of the

above, so obtain transformed ZK

 It is much harder to prove ZK than Sigma

 ZK – distributions and simulation

 Sigma: only HVZK and special soundness

14

ZK and Sigma Protocols

March 18, 2014 Secure Computation

 Prove that the El Gamal encryption (u,v) under public-key

(g,h) is to the value m

 By the definition of El Gamal encryption: u=gr, v=hrm

 Thus (g,h,u,v/m) is a DH tuple

 So, given (g,h,u,v,m), just prove that (g,h,u,v/m) is a DH

tuple

15

Using Sigma Protocols and ZK

March 18, 2014 Secure Computation

 P1 chooses a random x, sends (g,h,gr,hrx)

 P1 ZK-proves that it knows the encrypted value

 Suffices to prove that it knows the discrete log of h

 P2 chooses a random y and sends to P1

 P1 sends x (without decommitting)

 P1 ZK-proves that encrypted value was x

 Both parties output x+y

 Cost: O(1) exponentiations

16

Another application: Efficient Coin

Tossing

March 18, 2014 Secure Computation

 Relation: ((h,c),(x,r))R iff c=grhx

 Sigma protocol:

 P chooses random , and sends a=hg

 V sends a random e

 P sends u=+ex, v=+er

 V checks that hugv = ace

 Completeness:

 hugv =h+exg+er= hg(hxgr)e=ace

17

Prove Knowledge of Committed Value

March 18, 2014 Secure Computation

 Special soundness:

 Given (a,e,u,v),(a,e,u,v), we have hugv =

ace, hugv = ace

 Thus, hugvc-e = hugv c-e

 and hu-ugv-v  = ce-e

 Conclude: x = (u-u)(e-e) and

 r = (v-v)(e-e)

 Special HVZK

 Given (g,h,h,c) and e, choose random

u,v and compute a = hugvc-e

18

Pedersen Commitment Proof

)h,c),(x,r)((P V

a=hg

e

u=+ex,

v=+er

hugv = ace
?

March 18, 2014 Secure Computation

 Prove that the Pedersen committed value is x

 Relation: ((h,c,x),(r))R iff c=grhx

 Observe: ch-x = gr

 Conclusion: just prove that you know the discrete log of ch-x

 Application: statistical coin tossing

19

Proof of Pedersen Value

March 18, 2014 Secure Computation

Constructions of Oblivious Transfer

March 18, 2014 Secure Computation page 20

1-out-of-2 Oblivious Transfer

March 18, 2014 Secure Computation page 21

 Two players: sender and receiver.

 Sender has two inputs, x0, x1.

 Receiver has an input j  {0,1}.

 Output:

 Receiver learns xj and nothing else.

 Sender learns nothing about j.

 Depending on the OT variant, the inputs x0,x1 could be

strings or bits.

Security Definitions for OT

March 18, 2014 Secure Computation page 22

 It appeared to be quite hard to design an OT protocol

that is secure against malicious adversaries in the sense of

comparison to the ideal model.

 Only recently were efficient such protocols designed.

 Therefore looser security definitions were used

 These definitions ensure privacy but not correctness.

 Namely, they do not ensure that the output is that of an OT

functionality, or ensure independence of inputs.

Security Definitions for OT

March 18, 2014 Secure Computation page 23

 Defining what is means to protect the receiver’s privacy is easy,

since the sender receives no output in the ideal model and

should therefore learn nothing about the receiver’s input.

 Receiver’s privacy – indistinguishability

 For any values of the sender’s inputs x0,x1, the sender cannot

distinguish between the case that the receiver’s input is 0

and the case that it is 1.

Security Definitions for OT

March 18, 2014 Secure Computation page 24

 Definition of sender’s security:

 This case is harder since the receiver does learn something about

the sender’s input

Security Definitions for OT

March 18, 2014 Secure Computation page 25

 Definition of sender’s security:

 For every algorithm A’ that the receiver might run in the real

implementation of oblivious transfer

 there is an algorithm A’’ that the receiver can run in the ideal

implementation

 such that for any values of x0,x1 the outputs of A’ and A’’ are

indistinguishable.

 Namely, the receiver in the real implementation does not learn

anything more than the receiver in the ideal implementation.

 This definition does not handle delicate issues, such as whether

the receiver “knows” j or the sender “knows” x0,x1

The Even-Goldreich-Lempel 1-out-of-2 OT construction

(providing security only against semi-honest adversaries)

March 18, 2014 Secure Computation page 26

 Setting:
 Sender has two inputs, x0, x1.

 Receiver has an input j  {0,1}.

 Protocol:
 Receiver chooses a random public/private key pair (E,D).

 It sets PKj=E, and chooses PK1-j at random from the same
distribution as that of public keys*. It then sends (PK0,PK1)
to the sender.

 The sender encrypts x0 with PK0, and x1 with PK1, and
sends the results to the receiver.

 The receiver decrypts xj.

 Why is this secure against semi-honest adversaries?
 (*) It is required that it is possible to sample items with the exact

distribution of public keys, and do this without knowing how to
decrypt the resulting ciphertexts.

