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 Let G be a group of order q, with generator g 

 P and  V have input hG.  P has w such that gw = h 

 P proves that to V that it knows DLOGg(h) 

 P chooses a random r and sends a=gr to V 

 V sends P a random e0,1t  

 P sends z=r+ew mod q to V 

 V checks that gz = ahe 
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 A tool: commitment schemes 

  Enables to commit to a chosen value while keeping it 

secret, with the ability to reveal the committed value later. 

 A commitment has two properties: 

 Binding: After sending the commitment, it is impossible for the 

committing party to change the committed value. 

 Hiding: By observing the commitment, it is impossible to learn 

what is the committed value. (Therefore the commitment 

process must be probabilistic.) 

 It is possible to have unconditional security for any one of 

these properties, but not for both. 
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ZK from Sigma Protocols 
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 The basic idea 

 Have V first commit to its challenge e using a perfectly-hiding 

commitment 

 The protocol 

 P sends the first message  of the commit protocol 

 V sends a commitment c=Com(e;r) 

 P sends a message a 

 V opens the commitment by sending (e,r) 

 P checks that c=Com(e;r)  and if yes sends a reply z 

 V accepts based on (x,a,e,z) 
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ZK from Sigma Protocols 
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 Soundness: 

 The perfectly hiding commitment reveals nothing about e and 

so soundness is preserved 

 Zero knowledge 

 In order to simulate: 

 V commits. Send a generated by the simulator, for a 

random e. 

 Receive V’s decommitment to e 

 Run the simulator again with e, rewind V and send a 

 Repeat until V decommits to e again 

 Conclude by sending z 

 Analysis… 
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ZK from Sigma Protocols 
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 Highly efficient perfectly-hiding commitments (two 

exponentiations for string commit) 

 Parameters: generator g, order q 

 Commit protocol (commit to x): 

 Receiver chooses random k and sends h=gk 

 Sender sends c=grhx, for random r 

 Hiding:  

 For every x,y there exist r,s s.t. r+kx = s+ky mod q 

 Binding: 

 If sender can open commitment in two ways, i.e. find (x,r),(y,s) s.t. 

grhx=gshy, then k = (r-s)/(y-x) mod q 
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Pedersen Commitments 
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 Using Pedersen commitments, the entire DLOG proof 

costs only 5 additional group exponentiations 

 In Elliptic curve groups this is very little 
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Efficiency of ZK 
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 Is the previous protocol a proof of knowledge? 

 It seems not to be  

 The extractor for the Sigma protocol needs to obtain two 

transcripts with the same a and different e 

 The prover may choose its first message a differently for every 

commitment string. 

 But in this protocol the prover sees a commitment to e before 

sending a. 

 So if the extractor changes e, the prover changes a 
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 Solution: use a trapdoor (equivocal) commitment scheme 

 Given a trapdoor, it is possible to open the commitment to any 

value 

 Pedersen has this property – given the discrete log k of h, 

can decommit to any value 

 Commit to x:  c = grhx 

 To decommit to y, find s such that r+kx = s+ky 

 This is easy if k is known: compute s = r+k(x-y) mod q 
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ZKPOK from Sigma Protocols 
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 The basic idea 

 Have V first commit to its challenge e using a perfectly-hiding 
trapdoor (equivocal) commitment (such as Pedersen) 

 The protocol 

 P sends the first message  of the commit protocol (e.g., 
including h in the case of Pedersen commitments). 

 V sends a commitment c=Com(e;r) 

 P sends a message a 

 V sends (e,r) 

 P checks that c=Com(e;r)  and  if correct sends z and also 
the trapdoor for the commitment 

 V accepts if the trapdoor is correct and (x,a,e,z) is accepting 
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ZKPOK from Sigma Protocols 
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ZKPOK from Sigma Protocols 
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Verify c=grhe 
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 Why does this help? 

 Zero-knowledge remains the same 

 Extraction: after verifying the proof once, the extractor 

obtains k and can rewind back to the decommitment of c 

and send any (e,r) 

 

 Efficiency: 

 Just 6 exponentiations (very little) 
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ZKPOK from Sigma Protocols 
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 We typically want zero knowledge, so why bother with 

sigma protocols? 

 There are many useful general transformations 

 E.g., parallel composition, compound statements 

 The ZK and ZKPOK transformations can be applied on top of the 

above, so obtain transformed ZK 

 

 It is much harder to prove ZK than Sigma 

 ZK – distributions and simulation 

 Sigma: only HVZK and special soundness 
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ZK and Sigma Protocols 
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 Prove that the El Gamal encryption (u,v) under public-key 

(g,h) is to the value m 

 By the definition of El Gamal encryption: u=gr, v=hrm 

 Thus (g,h,u,v/m) is a DH tuple 

 So, given (g,h,u,v,m), just prove that (g,h,u,v/m) is a DH 

tuple 
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Using Sigma Protocols and ZK 
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 P1 chooses a random x, sends (g,h,gr,hrx) 

 P1 ZK-proves that it knows the encrypted value 

 Suffices to prove that it knows the discrete log of h 

 P2 chooses a random y and sends to P1 

 P1 sends x (without decommitting) 

 P1 ZK-proves that encrypted value was x 

 Both parties output x+y 

 

 Cost: O(1) exponentiations 
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Another application: Efficient Coin 

Tossing 
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 Relation: ((h,c),(x,r))R iff c=grhx 

 Sigma protocol: 

 P chooses random , and sends a=hg 

 V sends a random e 

 P sends u=+ex, v=+er 

 V checks that hugv = ace 

 

 Completeness: 

 hugv =h+exg+er= hg(hxgr)e=ace 
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Prove Knowledge of Committed Value 
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 Special soundness: 

 Given (a,e,u,v),(a,e,u,v), we have hugv = 

ace, hugv = ace  

 Thus,  hugvc-e = hugv c-e  

 and     hu-ugv-v  = ce-e 

 Conclude: x = (u-u)(e-e)   and         

      r  = (v-v)(e-e) 
 

 Special HVZK 

 Given (g,h,h,c) and e, choose random 

u,v and compute              a = hugvc-e 
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Pedersen Commitment Proof 
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 Prove that the Pedersen committed value is x 

 Relation: ((h,c,x),(r))R iff c=grhx 

 Observe: ch-x = gr 

 Conclusion: just prove that you know the discrete log of ch-x 

 

 Application: statistical coin tossing 
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Proof of Pedersen Value 
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Constructions of Oblivious Transfer 
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1-out-of-2 Oblivious Transfer 
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 Two players: sender and receiver. 

 Sender has two inputs, x0, x1. 

 Receiver has an input j  {0,1}. 

 Output: 

 Receiver learns xj and nothing else.  

 Sender learns nothing about j. 

 

 Depending on the OT variant, the inputs x0,x1 could be 

strings or bits. 

 



Security Definitions for OT 
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 It appeared to be quite hard to design an OT protocol 

that is secure against malicious adversaries in the sense of 

comparison to the ideal model. 

 Only recently were efficient such protocols designed.  

 

 Therefore looser security definitions were used 

 These definitions ensure privacy but not correctness. 

 Namely, they do not ensure that the output is that of an OT 

functionality, or ensure independence of inputs. 

 



Security Definitions for OT 
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 Defining what is means to protect the receiver’s privacy is easy, 

since the sender receives no output in the ideal model and 

should therefore learn nothing about the receiver’s input. 

 

 Receiver’s privacy – indistinguishability 

 For any values of the sender’s inputs x0,x1, the sender cannot 

distinguish between the case that the receiver’s input is 0 

and the case that it is 1. 

 



Security Definitions for OT 
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 Definition of sender’s security: 

 This case is harder since the receiver does learn something about 

the sender’s input 



Security Definitions for OT 
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 Definition of sender’s security: 

 For every algorithm A’ that the receiver might run in the real 

implementation of oblivious transfer 

 there is an algorithm A’’ that the receiver can run in the ideal 

implementation 

 such that for any values of x0,x1 the outputs of A’ and A’’ are 

indistinguishable. 

 Namely, the receiver in the real implementation does not learn 

anything more than the receiver in the ideal implementation. 

 

 This definition does not handle delicate issues, such as whether 

the receiver “knows” j or the sender “knows” x0,x1 



The Even-Goldreich-Lempel 1-out-of-2 OT construction 

(providing security only against semi-honest adversaries) 
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 Setting: 
 Sender has two inputs, x0, x1. 

 Receiver has an input j  {0,1}. 

 Protocol: 
 Receiver chooses a random public/private key pair (E,D). 

 It sets PKj=E, and chooses PK1-j at random from the same 
distribution as that of public keys*. It then sends (PK0,PK1) 
to the sender.  

 The sender encrypts x0 with PK0, and x1 with PK1, and 
sends the results to the receiver.  

 The receiver decrypts xj. 

 Why is this secure against semi-honest adversaries? 
 (*) It is required that it is possible to sample items with the exact 

distribution of public keys,  and do this without knowing how to 
decrypt the resulting ciphertexts. 


