Advanced Topics in Cryptography

Lecture 4

Benny Pinkas

Based on slides of Yehuda Lindell

page 1 Secure Computation March 18, 2014

An

Example — Schnorr DLOG

» Let G be a group of order q, with generator g

» Pand V have input heG. P has w such that g¥ = h

» P proves that toV that it knows DLOG,(h)

P chooses a random r and sends a=g" to V

V sends P a random e€{0,1 }*

P sends z=r+ew mod q to V

V checks that gz = ah®

P (h,w)

a=g’

V(h)

e

Z=r+ew

N

gZ?: ahe

Secure Computation March 18, 2014

ZK from Sigma Protocols

» A tool: commitment schemes

» Enables to commit to a chosen value while keeping it
secret, with the ability to reveal the committed value later.

» A commitment has two properties:

Binding: After sending the commitment, it is impossible for the
committing party to change the committed value.

Hiding: By observing the commitment, it is impossible to learn
what is the committed value. (Therefore the commitment
process must be probabilistic.)

» It is possible to have unconditional security for any one of
these properties, but not for both.

3 Secure Computation March 18, 2014

ZK from Sigma Protocols

» The basic idea
Have V first commit to its challenge e using a perfectly-hiding
commitment
» The protocol
P sends the first message a of the commit protocol
V sends a commitment c=Com,(e;r)
P sends a message a
V opens the commitment by sending (e,r)
P checks that c=Com_(e;r) and if yes sends a reply z

V accepts based on (x,a,e,z)

4 Secure Computation March 18, 2014

ZK from Sigma Protocols

» Soundness:

The perfectly hiding commitment reveals nothing about e and
so soundness is preserved

» Zero knowledge

In order to simulate:

V commits. Send a' generated by the simulator, for a
random e’.

Receive V’s decommitment to e

Run the simulator again with e, rewind V and send a
Repeat until ¥V decommits to e again
Conclude by sending z
Analysis...

Secure Computation March 18, 2014

Pedersen Commitments

» Highly efficient perfectly-hiding commitments (two
exponentiations for string commit)

Parameters: generator g, order (
Commit protocol (commit to x):

Receiver chooses random k and sends h=gk

Sender sends c=g"h*, for random r
Hiding:
For every x,y there exist r,s s.t. r+kx = s+ky mod q
Binding:
If sender can open commitment in two ways, i.e. find (x,r),(Y,s) s.t.
g'h*=gshY, then k = (r-s)/(y-x) mod q

7 Secure Computation March 18, 2014

Efficiency of ZK

» Using Pedersen commitments, the entire DLOG proof
costs only 5 additional group exponentiations

In Elliptic curve groups this is very little

8 Secure Computation March 18, 2014

ZKPOK from Sigma Protocols

» Is the previous protocol a proof of knowledge?
It seems not to be
The extractor for the Sigma protocol needs to obtain two
transcripts with the same a and different e

The prover may choose its first message a differently for every
commitment string.

But in this protocol the prover sees a commitment to e before
sending a.

So if the extractor changes e, the prover changes a

9 Secure Computation March 18, 2014

ZKPOK from Sigma Protocols

» Solution: use a trapdoor (equivocal) commitment scheme

Given a trapdoor, it is possible to open the commitment to any
value

» Pedersen has this property — given the discrete log k of h,
can decommit to any value
Commit to x: ¢ = g'h*
To decommit to y, find s such that r+kx = s+ky
This is easy if k is known: compute s = r+k(x-y) mod q

10 Secure Computation March 18, 2014

ZKPOK from Sigma Protocols

» The basic idea
Have V first commit to its challenge e using a perfectly-hiding
trapdoor (equivocal) commitment (such as Pedersen)

» The protocol

P sends the first message a of the commit protocol (e.g.,
including h in the case of Pedersen commitments).

V sends a commitment c=Com(e;r)
P sends a message a
V sends (e,r)

P checks that c=Com(e;r) and if correct sends z and also
the trapdoor for the commitment

V accepts if the trapdoor is correct and (x,a,e,z) is accepting

11 Secure Computation March 18, 2014

ZKPOK from Sigma Protocols

P (x,w)

Verify c=g'he

h=g K. random k

V(x)

C:gl’he

Sigma msg a

(e.r)

(z.k)

Verify (a,e,z)

Verify h=gk

12

Secure Computation March 18, 2014

ZKPOK from Sigma Protocols
» Why does this help?

Zero-knowledge remains the same

Extraction: after verifying the proof once, the extractor
obtains k and can rewind back to the decommitment of ¢
and send any (e',r’)

» Efficiency:

Just 6 exponentiations (very little)

13 Secure Computation March 18, 2014

ZK and Sigma Protocols

» We typically want zero knowledge, so why bother with
sigma protocols!?
There are many useful general transformations

E.g., parallel composition, compound statements

The ZK and ZKPOK transformations can be applied on top of the
above, so obtain transformed ZK

It is much harder to prove ZK than Sigma
ZK — distributions and simulation

Sigma: only HVZK and special soundness

14 Secure Computation March 18, 2014

Using Sigma Protocols and ZK

» Prove that the El Gamal encryption (u,v) under public-key
(g,h) is to the value m
By the definition of El Gamal encryption: u=g", v=h"-m
Thus (g,h,u,v/m) is a DH tuple

So, given (g,h,u,v,m), just prove that (g,h,u,v/m) is a DH
tuple

15 Secure Computation March 18, 2014

Another application: Efficient Coin
Tossing

» P, chooses a random Xx, sends (g,h,g",h"x)

» P, ZK-proves that it knows the encrypted value

Suffices to prove that it knows the discrete log of h

» P, chooses a random y and sends to P,
» P, sends x (without decommitting)
» P, ZK-proves that encrypted value was x

» Both parties output x+y

» Cost: O(l) exponentiations

16 Secure Computation March 18, 2014

Prove Knowledge of Committed Value

» Relation: ((h,c),(x,r))eR iff c=g"h*
» Sigma protocol:
P chooses random a8 and sends a=h%gF
V sends a random e
P sends u=a+ex, v=p+er
V checks that h¥g" = ac®

» Completeness:
hugv =ha+eng+er= hagﬁ(hxgr)e=ace

17 Secure Computation March 18, 2014

Pedersen Commitment Proof

» Special soundness:

Given (a,e,u,v),(a,e’,u’,v’), we have htg" =
ace, h'g''= ac®
Thus, hug'c® = h¥'g"'c®
and hu-u’gv-v’ = ce-€
Conclude: x = (u-u')(e-e’) and
r = (v-v')(e-e’)

» Special HVZK

18

Given (g,h,h,c) and e, choose random
u,v and compute a = hug'c*

Secure Computation

P ((h.c),(x.r) v
a:hagﬁ

N

e

1

u=o+ex, .
v=p+er

hUgV = ace

March 18, 2014

Proof of Pedersen Value

» Prove that the Pedersen committed value is x

» Relation: ((h,¢,x),(r)) eR iff c=g"'h*
Observe: ch™ = g"

Conclusion: just prove that you know the discrete log of ch™

» Application: statistical coin tossing

19 Secure Computation March 18, 2014

Constructions of Oblivious Transfer

page 20 Secure Computation March 18, 2014

1-out-of-2 Oblivious Transfer

» Two players: sender and receiver.
Sender has two inputs, X, X;.
Receiver has an input j € {0,1}.

» Output:

Receiver learns x. and nothing else.

j
Sender learns nothing about j.

» Depending on the OT variant, the inputs x,,x, could be
strings or bits.

page 21 Secure Computation March 18, 2014

Security Definitions for OT

» It appeared to be quite hard to design an OT protocol
that is secure against malicious adversaries in the sense of
comparison to the ideal model.

Only recently were efficient such protocols designed.

» Therefore looser security definitions were used
These definitions ensure privacy but not correctness.

Namely, they do not ensure that the output is that of an OT
functionality, or ensure independence of inputs.

page 22 Secure Computation March 18, 2014

Security Definitions for OT

» Defining what is means to protect the receiver’s privacy is easy,
since the sender receives no output in the ideal model and
should therefore learn nothing about the receiver’s input.

» Receiver’s privacy — indistinguishability
For any values of the sender’s inputs x,,x,, the sender cannot
distinguish between the case that the receiver’s input is 0
and the case that it is I.

page 23 Secure Computation March 18, 2014

Security Definitions for OT

» Definition of sender’s security:

This case is harder since the receiver does learn something about
the sender’s input

page 24 Secure Computation March 18, 2014

Security Definitions for OT

» Definition of sender’s security:

For every algorithm A’ that the receiver might run in the real
implementation of oblivious transfer

there is an algorithm A” that the receiver can run in the ideal
implementation

such that for any values of x,,x,; the outputs of A’ and A” are
indistinguishable.

Namely, the receiver in the real implementation does not learn
anything more than the receiver in the ideal implementation.

» This definition does not handle delicate issues, such as whether
the receiver “knows” j or the sender “knows” x,,x;

page 25 Secure Computation March 18, 2014

The Even-Goldreich-Lempel 1-out-of-2 OT construction
(providing security only against semi-honest adversaries)

» Setting:
Sender has two Inputs, X,, X;.
Receiver has an input | € {0,1}.

» Protocol:
Receliver chooses a random public/private key pair (E,D).
It sets PK=E, and chooses PK; at random from the same
distribution as that of public keys It then sends (PK,,PK;)
to the sender.
The sender encrypts x, with PK,, and x; with PK,, and
sends the results to the receiver.
The receiver decrypts x;.
Why is this secure against semi-honest adversaries?

» (*) Itis required that it is possible to sample items with the exact
distribution of public keys, and do this without knowing how to

decrypt the resulting ciphertexts.

page 26 Secure Computation March 18, 2014

