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Security Definitions for OT 
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 Defining what is means to protect the receiver’s privacy is easy, 

since the sender receives no output in the ideal model and 

should therefore learn nothing about the receiver’s input. 

 

 Receiver’s privacy – indistinguishability 

 For any values of the sender’s inputs x0,x1, the sender cannot 

distinguish between the case that the receiver’s input is 0 

and the case that it is 1. 

 



Security Definitions for OT 

March 25, 2014 Secure Computation page 7 

 Definition of sender’s security: 

 For every algorithm A’ that the receiver might run in the real 

implementation of oblivious transfer 

 there is an algorithm A’’ that the receiver can run in the ideal 

implementation 

 such that for any values of x0,x1 the outputs of A’ and A’’ are 

indistinguishable. 

 Namely, the receiver in the real implementation does not learn 

anything more than the receiver in the ideal implementation. 

 

 This definition does not handle delicate issues, such as whether 

the receiver “knows” j or the sender “knows” x0,x1 



The Even-Goldreich-Lempel 1-out-of-2 OT construction 

(providing security only against semi-honest adversaries) 
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 Setting: 
 Sender has two inputs, x0, x1. 

 Receiver has an input j  {0,1}. 

 Protocol: 
 Receiver chooses a random public/private key pair (E,D). 

 It sets PKj=E, and chooses PK1-j at random from the same 
distribution as that of public keys*. It then sends (PK0,PK1) 
to the sender.  

 The sender encrypts x0 with PK0, and x1 with PK1, and 
sends the results to the receiver.  

 The receiver decrypts xj. 

 Why is this secure against semi-honest adversaries? 
 (*) It is required that it is possible to sample items with the exact 

distribution of public keys,  and do this without knowing how to 
decrypt the resulting ciphertexts. 



The Bellare-Micali Construction  
(providing security against malicious adversaries) 
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 Preliminaries:  

 Gq is a subgroup of order q of Zp*, where p is prime and 

p=2q+1. 

 The OT protocol is secure assuming that the Computational 

Diffie-Hellman assumption holds for Gq. 

 The Computational Diffie-Hellman assumption (CDH) is that 

the following problem is hard: 

 The input to the problem is a generator g and values ga ,gb  

generated with random a,b[1,q]. 

 The task is to find z=ga·b.  

 (There is no need to use here the Decisional Diffie-Hellman 

problem) 



The Bellare-Micali Construction 
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 Initialization: The sender chooses a random C in Gq. 

 Protocol:  (slightly modified) 

 The receiver picks a random k[1,q], sets public keys 
PKj=gk, and PK1-j=C/PKj. It sends PK0 to the sender. 

 The sender computes PK1=C/PK0. Chooses a random r. 

 Generates El Gamal encryptions:  

 E0 = (gr,H((PK0)
r)x0), E1 = (gr,H((PK1)

r)x1), and sends 
them to the receiver. 

 The receiver computes H((PKj)
r) and decrypts Ej. 

 Security: 

 Sender cannot learn anything about j (unconditionally). 

 The receiver cannot compute the discrete logs of both PK0 
and PK1. (why?) (why does this imply security? ) 



Security of the Bellare-Micali Construction 
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 The receiver cannot compute the discrete logs of both 
PK0 and PK1. 

 

 The Computational Diffie-Hellman assumption implies 
that it cannot compute both (PK0)

r and (PK1)
r: 

 Computing both (PK0)
r and (PK1)

r , implies that the 
receiver can also compute Cr.  

 CDH: (g,ga,gb)  gab  is hard 
 The receiver only knows g,C,gr (for random C and r), and 

CDH implies that it cannot compute Cr. 

 There is therefore an index i such that the receiver does 
not know (PKi)

r 
 If we assume that H() is a random function (a random 

oracle) then the receiver cannot distinguish H((PKi)
r) from 

a random string.  



Security of the Bellare-Micali Construction 

 To complete the proof, based on the observations given 

in the previous slide, we must show a proof of security by 

simulation, namely show that: 

 

 For every algorithm A’ that the receiver might run in the 

real implementation of oblivious transfer 

 there is an algorithm A’’ that the receiver can run in the 

ideal implementation 

 such that for any values of x0,x1 the outputs of A’ and A’’ 

are indistinguishable. 
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OT secure against malicious adversaries, without 

random oracles [NP] 

March 25, 2014 Secure Computation page 13 

 Security is based on the DDH assumption alone. 

 Security is proven according to the definition given before, 

ensuring only privacy, rather than proving full security. 

 

 The Decisional Diffie-Hellman assumption (DDH) 

 The following problem is hard: 

 The input to the problem is  

 a generator g  

 values ga ,gb generated with random a,b[1,q] 

 and a value gc where with probability ½, c was chosen at 

random in [1,q], and with probability ½, c=ab.  

 The task is to decide whether c= ab, or is random. 



OT secure against malicious adversaries, without 

random oracles [NP] 
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 Security is based on the DDH assumption alone. 

 Zp*, q, and sender’s and receiver’s inputs are as before.  

 Receiver 

 chooses random a,b,c1-j[1,q], and defines cj=ab (mod q).  

 It sends to the sender (ga, gb, gc0, gc1). 

 The sender 

 Certifies that gc0gc1. Chooses random s0,r0,s1,r1[1,q]. 

 Defines w0=(ga)s0gr0.  Encrypts x0 with the key (gc0)s0(gb)r0.  

 Defines w1=(ga)s1gr1.  Encrypts x1 with the key (gc1)s1(gb)r1. 

 Sends w0, w1 and the encryptions to receiver. 

 Receiver computes (wj)
b which is the key with which xj 

was encrypted. It uses it to and decrypt xj. 



 Correctness 

 Suppose  j=0.  R sends (ga, gb, gab, gc). 

 S defines w0=(ga)u0gv0.   

 S encrypts x0 with k0=(gab)u0(gb)v0.  

 Note that encryption key is equal to (w0)
b. 

 R computes k0=(w0)
b and uses it for decryption. 

 

 Overhead: 

 R computes 5 exponentiations. 

 S computes 8 exponentiations. 
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Properties 
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 Receiver’s security 

 Based on the DDH assumption 

 Must show that sender’s view is indistinguishable 

regardless of receiver’s input. 

 Sender receives either (ga, gb, gab, gc) or (ga, gb, gc, gab).  

 Suppose that it can distinguish between the two cases. 

 

 We can construct a distinguisher for the DDH problem, which 

distinguishes between (ga,gb,gab) and (ga,gb,gc): 

 The distinguisher receives (ga,gb,X) and  (ga,gb,Y), and  sends 

(ga,gb,X,Y) to S.  
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Privacy – malicious sender  
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 The security of the server is unconditional. 

 Does not depend on any cryptographic assumption. 

 Suppose that j=0. 

 Regarding x1, the server sends 

 w1=(ga)u1gv1.  
 x1 is then encrypted with the key k1=(gc)u1(gb)v1. 

 The values u1,v1 were chosen at random, and ab≠c1. 

 Claim: (w1,k1) are uniformly distributed. 

 Therefore the message (w1,k1) sent by S about x1 can be 

easily simulated. 
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Privacy – malicious receiver 
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 Proof of claim: 

 w1=(ga)u1gv1= g
a·u1+v1.  

 k1=(gc)u1(gb)v1= gc·u1+b·v1= (g(c/b)·u1+v1)b. 

 Define F(x) = u1
·x + v1.    F(x) is pair-wise independent: 

 x,y,s,t  Prob(F(x)=s & F(y)=t) = 1/|G|2 

 w1=gF(a).  
 k1= (gF(c/b))b. 

 c≠ab and therefore F(a) and F(c/b) are uniformly distributed.  

 ⇒ (w1,k1) are uniformly distributed. 
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Privacy – malicious receiver 
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