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 Defining what is means to protect the receiver’s privacy is easy, 

since the sender receives no output in the ideal model and 

should therefore learn nothing about the receiver’s input. 

 

 Receiver’s privacy – indistinguishability 

 For any values of the sender’s inputs x0,x1, the sender cannot 

distinguish between the case that the receiver’s input is 0 

and the case that it is 1. 

 



Security Definitions for OT 
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 Definition of sender’s security: 

 For every algorithm A’ that the receiver might run in the real 

implementation of oblivious transfer 

 there is an algorithm A’’ that the receiver can run in the ideal 

implementation 

 such that for any values of x0,x1 the outputs of A’ and A’’ are 

indistinguishable. 

 Namely, the receiver in the real implementation does not learn 

anything more than the receiver in the ideal implementation. 

 

 This definition does not handle delicate issues, such as whether 

the receiver “knows” j or the sender “knows” x0,x1 



The Even-Goldreich-Lempel 1-out-of-2 OT construction 

(providing security only against semi-honest adversaries) 
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 Setting: 
 Sender has two inputs, x0, x1. 

 Receiver has an input j  {0,1}. 

 Protocol: 
 Receiver chooses a random public/private key pair (E,D). 

 It sets PKj=E, and chooses PK1-j at random from the same 
distribution as that of public keys*. It then sends (PK0,PK1) 
to the sender.  

 The sender encrypts x0 with PK0, and x1 with PK1, and 
sends the results to the receiver.  

 The receiver decrypts xj. 

 Why is this secure against semi-honest adversaries? 
 (*) It is required that it is possible to sample items with the exact 

distribution of public keys,  and do this without knowing how to 
decrypt the resulting ciphertexts. 



The Bellare-Micali Construction  
(providing security against malicious adversaries) 

March 25, 2014 Secure Computation page 9 

 Preliminaries:  

 Gq is a subgroup of order q of Zp*, where p is prime and 

p=2q+1. 

 The OT protocol is secure assuming that the Computational 

Diffie-Hellman assumption holds for Gq. 

 The Computational Diffie-Hellman assumption (CDH) is that 

the following problem is hard: 

 The input to the problem is a generator g and values ga ,gb  

generated with random a,b[1,q]. 

 The task is to find z=ga·b.  

 (There is no need to use here the Decisional Diffie-Hellman 

problem) 



The Bellare-Micali Construction 
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 Initialization: The sender chooses a random C in Gq. 

 Protocol:  (slightly modified) 

 The receiver picks a random k[1,q], sets public keys 
PKj=gk, and PK1-j=C/PKj. It sends PK0 to the sender. 

 The sender computes PK1=C/PK0. Chooses a random r. 

 Generates El Gamal encryptions:  

 E0 = (gr,H((PK0)
r)x0), E1 = (gr,H((PK1)

r)x1), and sends 
them to the receiver. 

 The receiver computes H((PKj)
r) and decrypts Ej. 

 Security: 

 Sender cannot learn anything about j (unconditionally). 

 The receiver cannot compute the discrete logs of both PK0 
and PK1. (why?) (why does this imply security? ) 



Security of the Bellare-Micali Construction 
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 The receiver cannot compute the discrete logs of both 
PK0 and PK1. 

 

 The Computational Diffie-Hellman assumption implies 
that it cannot compute both (PK0)

r and (PK1)
r: 

 Computing both (PK0)
r and (PK1)

r , implies that the 
receiver can also compute Cr.  

 CDH: (g,ga,gb)  gab  is hard 
 The receiver only knows g,C,gr (for random C and r), and 

CDH implies that it cannot compute Cr. 

 There is therefore an index i such that the receiver does 
not know (PKi)

r 
 If we assume that H() is a random function (a random 

oracle) then the receiver cannot distinguish H((PKi)
r) from 

a random string.  



Security of the Bellare-Micali Construction 

 To complete the proof, based on the observations given 

in the previous slide, we must show a proof of security by 

simulation, namely show that: 

 

 For every algorithm A’ that the receiver might run in the 

real implementation of oblivious transfer 

 there is an algorithm A’’ that the receiver can run in the 

ideal implementation 

 such that for any values of x0,x1 the outputs of A’ and A’’ 

are indistinguishable. 
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OT secure against malicious adversaries, without 

random oracles [NP] 
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 Security is based on the DDH assumption alone. 

 Security is proven according to the definition given before, 

ensuring only privacy, rather than proving full security. 

 

 The Decisional Diffie-Hellman assumption (DDH) 

 The following problem is hard: 

 The input to the problem is  

 a generator g  

 values ga ,gb generated with random a,b[1,q] 

 and a value gc where with probability ½, c was chosen at 

random in [1,q], and with probability ½, c=ab.  

 The task is to decide whether c= ab, or is random. 



OT secure against malicious adversaries, without 

random oracles [NP] 
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 Security is based on the DDH assumption alone. 

 Zp*, q, and sender’s and receiver’s inputs are as before.  

 Receiver 

 chooses random a,b,c1-j[1,q], and defines cj=ab (mod q).  

 It sends to the sender (ga, gb, gc0, gc1). 

 The sender 

 Certifies that gc0gc1. Chooses random s0,r0,s1,r1[1,q]. 

 Defines w0=(ga)s0gr0.  Encrypts x0 with the key (gc0)s0(gb)r0.  

 Defines w1=(ga)s1gr1.  Encrypts x1 with the key (gc1)s1(gb)r1. 

 Sends w0, w1 and the encryptions to receiver. 

 Receiver computes (wj)
b which is the key with which xj 

was encrypted. It uses it to and decrypt xj. 



 Correctness 

 Suppose  j=0.  R sends (ga, gb, gab, gc). 

 S defines w0=(ga)u0gv0.   

 S encrypts x0 with k0=(gab)u0(gb)v0.  

 Note that encryption key is equal to (w0)
b. 

 R computes k0=(w0)
b and uses it for decryption. 

 

 Overhead: 

 R computes 5 exponentiations. 

 S computes 8 exponentiations. 
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Properties 
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 Receiver’s security 

 Based on the DDH assumption 

 Must show that sender’s view is indistinguishable 

regardless of receiver’s input. 

 Sender receives either (ga, gb, gab, gc) or (ga, gb, gc, gab).  

 Suppose that it can distinguish between the two cases. 

 

 We can construct a distinguisher for the DDH problem, which 

distinguishes between (ga,gb,gab) and (ga,gb,gc): 

 The distinguisher receives (ga,gb,X) and  (ga,gb,Y), and  sends 

(ga,gb,X,Y) to S.  
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Privacy – malicious sender  
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 The security of the server is unconditional. 

 Does not depend on any cryptographic assumption. 

 Suppose that j=0. 

 Regarding x1, the server sends 

 w1=(ga)u1gv1.  
 x1 is then encrypted with the key k1=(gc)u1(gb)v1. 

 The values u1,v1 were chosen at random, and ab≠c1. 

 Claim: (w1,k1) are uniformly distributed. 

 Therefore the message (w1,k1) sent by S about x1 can be 

easily simulated. 
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Privacy – malicious receiver 
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 Proof of claim: 

 w1=(ga)u1gv1= g
a·u1+v1.  

 k1=(gc)u1(gb)v1= gc·u1+b·v1= (g(c/b)·u1+v1)b. 

 Define F(x) = u1
·x + v1.    F(x) is pair-wise independent: 

 x,y,s,t  Prob(F(x)=s & F(y)=t) = 1/|G|2 

 w1=gF(a).  
 k1= (gF(c/b))b. 

 c≠ab and therefore F(a) and F(c/b) are uniformly distributed.  

 ⇒ (w1,k1) are uniformly distributed. 
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Privacy – malicious receiver 
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