Advanced Topics in Cryptography

Lecture 5

Benny Pinkas

Secure Computation March 25, 2014

Constructions of Oblivious Transfer

Security Definitions for OT

- Defining what is means to protect the receiver's privacy is easy, since the sender receives no output in the ideal model and should therefore learn nothing about the receiver's input.
- Receiver's privacy indistinguishability
 - For any values of the sender's inputs x₀,x₁, the sender cannot distinguish between the case that the receiver's input is 0 and the case that it is 1.

Security Definitions for OT

- Definition of sender's security:
 - For every algorithm A' that the receiver might run in the real implementation of oblivious transfer
 - there is an algorithm A" that the receiver can run in the ideal implementation
 - such that for any values of x_0, x_1 the outputs of A' and A'' are indistinguishable.
 - Namely, the receiver in the real implementation does not learn anything more than the receiver in the ideal implementation.
- This definition does not handle delicate issues, such as whether the receiver "knows" j or the sender "knows" x_0, x_1

The Even-Goldreich-Lempel 1-out-of-2 OT construction (providing security only against semi-honest adversaries)

- Setting:
 - Sender has two inputs, x_0 , x_1 .
 - Receiver has an input $j \in \{0, 1\}$.
- Protocol:
 - Receiver chooses a random public/private key pair (*E*,*D*).
 - It sets PK_j=E, and chooses PK_{1-j} at random from the same distribution as that of public keys^{*}. It then sends (PK₀, PK₁) to the sender.
 - The sender encrypts x_0 with PK_0 , and x_1 with PK_1 , and sends the results to the receiver.
 - The receiver decrypts x_{i} .
 - Why is this secure against semi-honest adversaries?
- (*) It is required that it is possible to sample items with the exact distribution of public keys, and do this without knowing how to decrypt the resulting ciphertexts.

The Bellare-Micali Construction (providing security against malicious adversaries)

Preliminaries:

- G_q is a subgroup of order q of Z_p^* , where p is prime and p=2q+1.
- The OT protocol is secure assuming that the Computational Diffie-Hellman assumption holds for G_q .
- The Computational Diffie-Hellman assumption (CDH) is that the following problem is hard:
 - The input to the problem is a generator g and values g^a, g^b generated with random a, b ∈ [1,q].
 - The task is to find $z=g^{a\cdot b}$.
- (There is no need to use here the Decisional Diffie-Hellman problem)

The Bellare-Micali Construction

- Initialization: The sender chooses a random C in G_q .
- Protocol: (slightly modified)
 - The receiver picks a random $k \in [1,q]$, sets public keys $PK_j = g^k$, and $PK_{1-j} = C/PK_j$. It sends PK_0 to the sender.
 - The sender computes $PK_1 = C/PK_0$. Chooses a random *r*.
 - Generates El Gamal encryptions:
 - $E_0 = (g^r, H((PK_0)^r) \oplus x_0), E_1 = (g^r, H((PK_1)^r) \oplus x_1), \text{ and sends them to the receiver.}$
 - The receiver computes $H((PK_j)^r)$ and decrypts E_j .
- Security:
 - Sender cannot learn anything about *j* (unconditionally).
 - The receiver cannot compute the discrete logs of both PK_0 and PK_1 . (why?) (why does this imply security? \Rightarrow)

Security of the Bellare-Micali Construction

- The receiver cannot compute the discrete logs of both PK_0 and PK_1 .
- The Computational Diffie-Hellman assumption implies that it cannot compute both (PK₀)^r and (PK₁)^r:
 - Computing both $(PK_0)^r$ and $(PK_1)^r$, implies that the receiver can also compute C^r .
 - CDH: $(g, g^a, g^b) \rightarrow g^{ab}$ is hard
 - The receiver only knows g,C,g^r (for random C and r), and CDH implies that it cannot compute C^r.
- There is therefore an index *i* such that the receiver does not know (*PK_i*)^r
 - If we assume that H() is a random function (a random oracle) then the receiver cannot distinguish H((PK_i)^r) from a random string.

Security of the Bellare-Micali Construction

- To complete the proof, based on the observations given in the previous slide, we must show a proof of security by simulation, namely show that:
 - For every algorithm A' that the receiver might run in the real implementation of oblivious transfer
 - there is an algorithm A" that the receiver can run in the ideal implementation
 - such that for any values of x_0, x_1 the outputs of A' and A'' are indistinguishable.

OT secure against malicious adversaries, without random oracles [NP]

Security is based on the DDH assumption alone.

- Security is proven according to the definition given before, ensuring only privacy, rather than proving full security.
- The Decisional Diffie-Hellman assumption (DDH)
 - > The following problem is hard:
 - The input to the problem is
 - ▶ a generator *g*
 - ▶ values g^a , g^b generated with random $a, b \in [1, q]$
 - and a value g^c where with probability ½, c was chosen at random in [1,q], and with probability ½, c=ab.
 - The task is to decide whether c = ab, or is random.

OT secure against malicious adversaries, without random oracles [NP]

- Security is based on the DDH assumption alone.
- Z_p^* , q, and sender's and receiver's inputs are as before.
- Receiver
 - chooses random $a, b, c_{1-j} \in [1,q]$, and defines $c_j = ab \pmod{q}$.
 - It sends to the sender $(g^a, g^b, g^{c0}, g^{c1})$.

The sender

- Certifies that $g^{c0} \neq g^{c1}$. Chooses random $s_0, r_0, s_1, r_1 \in [1, q]$.
- Defines $w_0 = (g^a)^{s_0} g^{r_0}$. Encrypts x_0 with the key $(g^{c_0})^{s_0} (g^b)^{r_0}$.
- Defines $w_1 = (g^a)^{s_1} g^{r_1}$. Encrypts x_1 with the key $(g^{c_1})^{s_1} (g^b)^{r_1}$.
- Sends w_0 , w_1 and the encryptions to receiver.
- Receiver computes (w_j)^b which is the key with which x_j was encrypted. It uses it to and decrypt x_j.

Properties

Correctness

- Suppose j=0. R sends (g^a, g^b, g^{ab}, g^c).
- S defines w₀=(g^a)^{u0}g^{v0}.
- S encrypts x_0 with $k_0 = (g^{ab})^{u0} (g^b)^{v0}$.
 - Note that encryption key is equal to $(w_0)^b$.
- R computes $k_0 = (w_0)^b$ and uses it for decryption.

Overhead:

- R computes 5 exponentiations.
- S computes 8 exponentiations.

Privacy – malicious sender

- Receiver's security
 - Based on the DDH assumption
 - Must show that sender's view is indistinguishable regardless of receiver's input.
 - Sender receives either (g^a, g^b, g^{ab}, g^c) or (g^a, g^b, g^c, g^{ab}).
 - Suppose that it can distinguish between the two cases.
 - We can construct a distinguisher for the DDH problem, which distinguishes between (g^a,g^b,g^{ab}) and (g^a,g^b,g^c):
 - The distinguisher receives (g^a,g^b,X) and (g^a,g^b,Y), and sends (g^a,g^b,X,Y) to S.

Privacy – malicious receiver

- The security of the server is unconditional.
 - Does not depend on any cryptographic assumption.
- Suppose that j=0.
- Regarding x₁, the server sends
 - ► w₁=(g^a)^{u1}g^{v1}.
 - x_1 is then encrypted with the key $k_1 = (g^c)^{u1} (g^b)^{v1}$.
 - The values u_1, v_1 were chosen at random, and $ab \neq c_1$.
 - ▶ **Claim:** (w₁,k₁) are uniformly distributed.
 - Therefore the message (w₁,k₁) sent by S about x₁ can be easily simulated.

Privacy – malicious receiver

Proof of claim:

- $W_1 = (g^a)^{u_1} g^{v_1} = g^{a \cdot u_1 + v_1}$.
- $k_1 = (g^c)^{u1} (g^b)^{v1} = g^{c \cdot u1 + b \cdot v1} = (g^{(c/b) \cdot u1 + v1})^b$.
- Define $F(x) = u_1 x + v_1$. F(x) is pair-wise independent:
 - ► $\forall x,y,s,t \text{ Prob}(F(x)=s \& F(y)=t) = 1/|G|^2$
- ▶ w₁=g^{F(a)}.
- ► $k_1 = (g^{F(c/b)})^b$.
- $c \neq ab$ and therefore F(a) and F(c/b) are uniformly distributed.
- ► \Rightarrow (w₁,k₁) are uniformly distributed.