
April 8, 2014 Secure computation page 1

Secure computation

Lecture 6

Benny Pinkas

 Adversarial behavior

 Semi-honest: follows the protocol specification

 Tries to learn more than allowed by inspecting transcript

 Malicious: follows any arbitrary strategy

 Adversarial power

 Polynomial-time

 Computationally unbounded:

information-theoretic security

 (based on slides of Yehuda Lindell)

2

Modeling Adversaries

April 8, 2014 Secure computation

 Corruption strategy

 Static: the set of corrupted parties is fixed before the

execution begins

 Adaptive: the adversary can corrupt parties during the

execution, based on what has happened

 Models modern “hacking”

 In general, much harder!

3

Modeling Adversaries

April 8, 2014 Secure computation

 Stand-alone

 Consider a single protocol execution only (or that only a single

execution is under attack)

 Concurrent general composition

 Arbitrary protocols executed concurrently

 Realistic setting, very important model

 Stand-alone vs composition

 Stand-alone: a good place to start studying secure computation,

techniques and tools are helpful

 Composition: true goal for constructions

4

Execution Setting

April 8, 2014 Secure computation

 Notations:

 Security parameter n

 We wish security to hold for all inputs of all lengths, as long as

n is large enough

 Function is negligible: if for every polynomial p() there

exists an N such that for all n>N we have (n) < 1/p(n)

5

Preliminaries

April 8, 2014 Secure computation

 Probability ensemble X={X(a,n)}

 Infinite series, indexed by a string a and natural n

 Each X(a,n) is a random variable

 In our context: the output of a protocol execution with

input a and security parameter n

 Probability space: randomness of parties

6

Preliminaries

April 8, 2014 Secure computation

 Computational indistinguishability X Y

 For every (non-uniform) polynomial-time distinguisher D

there exists a negligible function such that for every a and

all large enough n’s:

 |Pr[D(X(a,n))=1] - Pr[D(Y(a,n))=1]| < (n)

7

Preliminaries

April 8, 2014 Secure computation

 Functionality

 f=(f1,f2): for input vector x, each fi(x) is a random variable (for

probabilistic functionalities)

 Party Pi receives fi

 We denote (x,y) (f1(x,y),f2(x,y))

8

Notation

April 8, 2014 Secure computation

 Simulation:

 Given input and output, can generate the adversary’s view of

a protocol execution

 Important: since parties follow protocol, the inputs are well

defined

Semi-Honest Adversaries

April 8, 2014 Secure computation page 9

 semi-honest adversary A controlling P1, simulatorS1

 such that for every pair of inputs (x,y),

 the following are computationally indistinguishable

 The output of A, and the output of the honest party P2 after a

protocol execution

 The output of S1 given x1 and f1(x,y), and the value f2(x,y)

Similarly, semi-honest A controlling P2, S2, such that

inputs (x,y), the following are computationally indistinguishable

 The output of A, and the output of the honest party P1 after a

protocol execution

 The output of S2 given x2 and f2(x,y), and the value f1(x,y)

10

Security definition:

Semi-Honest Adversaries

April 8, 2014 Secure computation

11

Semi-Honest Adversaries

Protocol y
x

f1(x,y) &

transcript

f2(x,y)

April 8, 2014 Secure computation

12

Semi-Honest Adversaries

Protocol

Simulator

x,f1(x,y)
x

f1(x,y) &

transcript

April 8, 2014 Secure computation

 Correctness, independence of inputs, fairness are all non-

issues in the semi-honest model

 Why is privacy guaranteed by this definition?

 If the adversary can compute something after a real protocol

execution, it can compute it just from the input/output

 The adversary’s view in an execution can be generated from

the input and output only

 Very similar to zero-knowledge

13

Properties

April 8, 2014 Secure computation

 A crucial point: need to consider the joint

distribution of adversary’s output and honest parties’

output

 In the definition:

 We compare the distribution of all inputs and outputs

together with the adversary’s output

14

Joint Distribution

April 8, 2014 Secure computation

 Example:

 Functionality: A outputs random bit, B outputs nothing

 B should clearly not learn A’s output bit

 Protocol: A chooses a random bit, outputs it, and sends the

bit to B (who ignores it)

 This protocol is clearly insecure.

 But it is simulatable when separately looking at the distribution

of B’s view and actual outputs

 However, it is not simulatable when working according to the

definition

15

Joint Distribution

April 8, 2014 Secure computation

 In the case of deterministic functionalities, the

outputs are fully determined by the inputs

 It suffices to separately prove

 Correctness

 Simulation: show that can generate view of semi-

honest adversary (corrupted parties’ view), given

inputs and outputs only

 In other words…

16

Deterministic Functionalities

April 8, 2014 Secure computation

 Separately prove the following two statements

 The output of the protocol is indistinguishable from the

output of the functionality

 There exists a simulator S1such that for any adversary A

controlling P1, the output of A, and the output of S1

given x1 and f1(x), are indistinguishable.

 Similarly, that there exists a simulator S2 such that for any

adversary A controlling P2, the output of A, and the

output of S2 given x2 and f2(x), are indistinguishable.

17

Deterministic Functionalities

April 8, 2014 Secure computation

 First attempt: require the existence of a simulator that

generates the adversary’s view given the inputs/outputs of

the corrupted party

 Problem: what are the inputs used by the adversary?

 They are not necessarily those written on the input tape

 They are not explicit: the adversary doesn’t run the

protocol but arbitrary code

 For example, in the Bellare-Micali OT protocol, a malicious

server can send two random messages without knowing

what they encrypt

18

Malicious Adversaries

April 8, 2014 Secure computation

 What is the best we could hope for?

 An incorruptible trusted party

 All parties send inputs to trusted party (over perfectly secure

communication lines)

 Trusted party computes output

 Trusted party sends each party its output (over perfectly

secure communication lines)

 This is an ideal world

 What can an adversary do?

 Just choose its input…

19

The Ideal/Real Paradigm

April 8, 2014 Secure computation

 We would like our real protocol to behave like the ideal

world

 Formalizing this notion:

 For every adversary A attacking the real protocol, there exists

an adversary S in the ideal model such that the output

distributions (of all parties) are computationally

indistinguishable

 S simulates a real protocol execution while interacting in

the ideal world

 Here we always look at the joint output distribution

20

The Ideal/Real Paradigm

April 8, 2014 Secure computation

x
’

 y

Ideal World

Trusted
Party f(x

’,y
)

f(
x

’,
y
)

Real World

Protocol

arbitrary

output

output

arbitrary

output

f(x’,y)

y
x

April 8, 2014 Secure computation 21

 Protocol securely computes a function f if:

 For every non-uniform polynomial-time real-model

adversary A, there exists a non-uniform polynomial-time

ideal-model adversary S, such that for all input vectors and

auxiliary inputs:

 the joint outputs of A and the honest party in a real

execution of are indistinguishable from the joint outputs

of S and the honest party in an ideal execution where the

trusted party computes f

“Formal” Security Definition

April 8, 2014 Secure computation page 22

 The following properties hold

 Privacy: from adversary’s outputs

 Correctness: from honest party’s output

 Independence of inputs: from ideal execution

 Fairness and guaranteed output delivery: from ideal

execution

23

Properties

April 8, 2014 Secure computation

 In some cases, this ideal model is too strong and cannot

be achieved

 Fairness cannot be achieved in general without an honest

majority

 Consider two parties and consider removing the last

message of the protocol execution

 Works for coin tossing…

24

Relaxing the Ideal Model

April 8, 2014 Secure computation

 In order to model the case that fairness is not

guaranteed, change the instructions of the trusted party

in the ideal model:

 Trusted party receives input from all parties

 Trusted party sends corrupted party’s output to adversary

 Adversary says “continue” or “halt”

 If “continue”, trusted party sends output to honest party;

else, it sends “abort”

25

Relaxing the Ideal Model

April 8, 2014 Secure computation

