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Advanced Topics in Cryptography 

 

Lecture 7 

Benny Pinkas 

 



 

 A 1-out-of-2 OT protocol fully secure against 

malicious adversaries 

 Namely, 

 Such that for every adversary A attacking the real protocol, 

there exists an adversary S in the ideal model such that the 

output distributions (of all parties) are computationally 

indistinguishable 
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Goal 
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OT ensuring privacy alone against malicious 

adversaries [NP] 
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 We learned this protocol in a previous lecture 

 

 Security is based on the DDH assumption alone. 

 Security is proven according to a definition that ensures only 

privacy, rather than full security. 

 Receiver’s privacy – indistinguishability 

 For any values of the sender’s inputs x0,x1, the sender cannot 

distinguish between the case that the receiver’s input is 0 and the 

case that it is 1. 

 Definition of sender’s security: 

  receiver A’  algorithm A’’ in the ideal model s.t.  x0,x1 the 

outputs of A’ and A’’ are indistinguishable. 

 Namely, A’ learns nothing more than A’’. 

 

 



Recap: OT secure against malicious 

adversaries, without random oracles [NP] 

May 13, 2014 page 4 

 Zp*, q are as before.  

 Receiver 

 chooses random a,b,c1-j[1,q], and defines cj=ab (mod q).  

 It sends to the sender (ga, gb, gc0, gc1). 

 The sender 

 Certifies that gc0gc1. Chooses random s0,r0,s1,r1[1,q]. 

 Defines w0=(ga)s0gr0.  Encrypts x0 with the key (gc0)s0(gb)r0.  

 Defines w1=(ga)s1gr1.  Encrypts x1 with the key (gc1)s1(gb)r1. 

 Sends w0, w1 and the encryptions to receiver. 

 Receiver computes (wj)
b which is the key with which xj was 

encrypted. It uses it to and decrypt xj. 



 Correctness 

 Suppose  j=0.  R sends (ga, gb, gab, gc). 

 S defines w0=(ga)u0gv0.   

 S encrypts x0 with k0=(gab)u0(gb)v0.  

 Note that encryption key is equal to (w0)
b. 

 R computes k0=(w0)
b and uses it for decryption. 
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Properties 
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 Receiver’s security 

 Show that sender’s view is indistinguishable regardless of 

receiver’s input. 

 Sender receives either (ga, gb, gab, gc) or (ga, gb, gc, gab).  

 Distinguishing them implies breaking the DDH assumption 

 The security of the sender is unconditional. 

 Suppose that j=0. Regarding x1, the server sends w1=(ga)s1gr1.  x1 

is then encrypted with the key k1=(gc1)s1(gb)r1. 

 The values s1,r1 were chosen at random, and ab≠c1. 

 We showed that (w1,k1) are uniformly distributed, and can 

be easily simulated. 
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Privacy 
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Why doesn’t this protocol provide full 

security? 

 We would like to describe for each party a simulator that 

can interact with that party in a way that is 

indistinguishable from the protocol. 

 The simulator can access a trusted party, that when given the 

party’s input provides the right output 

 With regards to a receiver 

 The simulator must extract the receiver’s input and send it to 

the trusted party 

 With regards to a sender 

 The simulator must extract both of the sender’s inputs and 

send them to the trusted party 
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Background: Zero-knowledge proofs of 

knowledge 

 Learned about them earlier in the course 
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Approaches for a solution 

 Handling a corrupt receiver. 

 The receiver sends (ga, gb, gc0, gc1) 

 Ask the receiver to send a zk proof of knowledge for a. 

Namely, prove that it knows the discrete log of ga to the 

base g. 

 Then the simulator can extract a from this proof, and use 

it to find out which one of gc0, gc1 is equal to gab. 

 This reveals the receiver’s input, that can then be sent to the 

trusted party. 
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Approaches for a solution 

 Handling a corrupt sender. 

 The receiver sends (ga, gb, gc0, gc1) 

 Only one of gc0 or gc1 is equal to gab.  

 For the other option, the message that the sender 

encrypts and the receiver receives is unconditionally 

secure, and therefore the sender’s input cannot be 

extracted from it… 

 Must somehow solve this issue 
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OT protocol with full security 

 Inputs: Sender has inputs x0, x1. Receiver has input b. 

 

 Auxiliary input:  A group G of prime order q (so that each 

element is a generator),  and a generator g. 
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OT protocol with full security 

 R (with input j) chooses random a0,a1,r in [1,q]. Computes 

 h0=ga0, h1=ga1, a=gr,  and b0=(h0)
rgj, b1=(h1)

rgj  and sends them. 

 Let h=h0/h1, and b=b0/b1.  The receiver proves that (g,h,a,b) 

is a Diffie-Hellman tuple with relation to (G,q). 

 (Indeed h=ga0-a1, b=g(a0-a1)r, and a=gr, so this is DDH.) 

 Note that this means that 

 when j=0, (g,h0,a,b0) is a DDH tuple and (g,h1,a,b1/g) is not a 

DDH tuple 

 and when j=1, (g,h0,a,b0) is not a DDH tuple and (g,h1,a,b1/g) is a 

DDH tuple. 

 If the proof is verified, then it cannot be that both (g,h0,a,b0) and 

(g,h1,a,b1/g) are DDH tuples. 
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OT protocol with full security 

 R (with input j) chooses random a0,a1,r in [1,q]. Computes 

 h0=ga0, h1=ga1, a=gr,  and b0=(h0)
rgj, b1=(h1)

rgj  and sends them. 

 Let h=h0/h1, and b=b0/b1.  The receiver proves that (g,h,a,b) 

is a Diffie-Hellman tuple with relation to (G,q). 

 

 If sender accepts the proof, it chooses random u0,v0,u1,v1 in 

[1,q] and computes and sends 

 w0=au0gv0,  and encryption of x0 with the key z0=(b0)
u0(h0)

v0. 

 w1=au1gv1,  and encryption of x1 with the key z1=(b1/g)u1(h1)
v1. 

 

 Receiver decrypts zj with the key (wj)
aj 
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Correctness when both parties are 

honest 

 If j=0 

 (w0)
a0 =  

  (au0ga0 gv0a0) =  

 (gu0 a0 r gv0 a0) = gu0 r a0 gv0 a0  = b0
u0(h0)

v0  = z0 

 

 If j=1 

 (w1)
a1 =  

 (au1ga1 gv1a1) =  

  (gu1 a1 r gv1 a1) = gu1 r a1 gv1 a1 x1 =(b1/g)u1(h1)
v1 = z1.   
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Security proof for a corrupt sender 

 We construct a simulator interacting with the sender 

 Like an honest R, Sim computes h0=ga0, h1=ga1. 

 Unlike an honest R, Sim computes a=gr, b0=(h0)
r, b1=(h1)

rg. (The 

issue here is that g is multiplied into b1 but not into b0.) 

 Sim sends these values to the sender. 

 Sim “cheats” in the zero-knowledge proof to convince the 

sender that the values it sent are legitimate. 

 Namely, runs the proof. Saves the state of the sender. Learns what 

challenge the sender asks, and then goes back to the saved state and 

continues from that point with messages that agree with the 

challenge. 
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Security proof for a corrupt sender 

 We construct a simulator interacting with the sender 

 Like an honest R, Sim computes h0=ga0, h1=ga1. 

 Unlike an honest R, Sim computes a=gr, b0=(h0)
r, b1=(h1)

rg. (The 

issue here is that g is multiplied into b1 but not into b0.) 

 Sim sends these values to the sender. 

 Sim “cheats” in the zero-knowledge proof to convince the 

sender that the values it sent are legitimate. 

 Sim receives two encryptions from the sender.  Since it 

cheated, it can decrypt both of them as x0=z0/(w0)
a0 and 

x1=z1/(w1)
a1. 

 Sim sends x0,x1 to the trusted party computing the OT 

functionality. 
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Security proof for a corrupt sender (cont) 

 The only difference in sender’s view between the 

simulation and a real run is that in the simulation it 

receives b0=(h0)
r, b1=(h1)

rg whereas in the real run it 

receives b0=(h0)
rgb, b1=(h1)

rgb. 

 We must show that if the DDH holds then the following 

two tuples are indistinguishable 

 h0=ga0, h1=ga1, a=gr, b0=(h0)
r, b1=(h1)

rg 

 h0=ga0, h1=ga1, a=gr, b0=(h0)
r, b1=(h1)

r (this is for b=0) 

 We will show that these tuples are indistinguishable if it is 

hard to distinguish between tuples of the form (g,h,gr,hr) 

and (g,h,gr,hrg). (This is equivalent to DDH assumption.) 
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Security proof for a corrupt sender (cont) 

 We must show that if it is hard to distinguish between 

(g,h,gr,hr) and (g,h,gr,hrg) then the following two tuples are 

indistinguishable 

1. h0=ga0, h1=ga1, a=gr, b0=(h0)
r, b1=(h1)

rg 

2. h0=ga0, h1=ga1, a=gr, b0=(h0)
r, b1=(h1)

r (this is for b=0) 

 Suppose that distinguishing between Cases 1 and 2 is easy 

 We receive a challenge (g,h,s=gr,t) and need to find out if t=hr 

or t=hrg. 

 Choose random a0 and compute h0=ga0, b0=sa0,  and h1=h, b1=t.  

If t=hr then this is exactly as in Case 2, and if  t=hrg then this is 

exactly as in Case 1.  

 Therefore distinguishing the cases solves this DDH variant. 
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Security proof for a corrupt receiver 

 We construct a simulator interacting with the receiver 

 Sim receives (h0,h1,a,b0,b1) from the corrupt receiver. If they 

are not all in the group then Sim aborts. 

 

 Sim “cheats” in the zero-knowledge proof. 

 (In this proof the receiver proves that (g, h=h0/h1, g
r, b=b0/b1) is a 

Diffie-Hellman tuple, by proving that it knows the corresponding r.) 

 Namely, Sims saves the state of the receiver, rewinds the protocol and 

runs it again, and using the information it learned in both runs it 

extracts r. 

 Sim computes c=b0/(h0)
r. If c=1 then Sim sets j=0. Otherwise it 

sets j=1. 
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Security proof for a corrupt receiver (cont) 

 We construct a simulator interacting with the receiver 

 Sim sends j to the trusted party computing the OT 

functionality and receives back xb. 

 Sim computes (w0,z0) and (w1,z1) like an honest sender. 

 Sim encrypts xj using the key zj, and encrypts x1-j using the key 

z1-j. 

 Sim outputs whatever the corrupt receiver outputs, and halts.  
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Security proof for a corrupt receiver (cont) 

 Analysis 

 We need to show that the distributions of A’s view in the real 

run and in the simulations are indistinguishable. 

 The only difference between the two views is the way in which 

the input x1-j is encrypted. 

 We prove separately for the case where c=b0/(h0)
r equals 1, 

equals g, or equals a different value. 

 c=1 (in this case Sim sets j=0) 

 Due to the ZK proof, there is an r s.t. a=gr and b0/b1=(h0/h1)
r.  

Since c=b0/(h0)
r =1, then b1=h1

r.  

 x1 is encrypted using w1=(gr)u1gv1 and z1=(b1/g)u1(h1)
v1

.  Since 

b1,h1,u1,v1 are distributed as in the real run, the distributions 

are equal. 
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Security proof for a corrupt receiver (cont) 

 Analysis (cont.) 

 c=g (in this case Sim sets j=1) 

 Again,  due to the ZK proof, there is an r s.t. a=gr and b0=gh1
r.  

 x0 is encrypted using w0=(gr)u0gv0 and z0=(b0)
u0(h0)

v0
.  Since 

b0,h0,u0,v0 are distributed as in the real run, the distributions 

are equal. 

 c has a different value (in this case Sim sets j=1) 

 There is an r s.t. a=gr and b0=gth1
r,for some value d. 

 x0 is encrypted using w0=(gr)u0gv0 and  

z0=(b0)
u0(h0)

v0=(h1)
u0(gt)u0 (h0)

v0 

 This is equivalent to setting u’0=u0+1/t and v’0=v0-r/t.  

 Now  b0,h0,u’0,v;0 are distributed as in the real run. 
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