
May 14, 2014 page 1

Advanced Topics in Cryptography

Lecture 8

Secure two-Party Computation

Benny Pinkas

page 2 May 14, 2014

Related papers

 Related papers:

 A. Yao
How to Generate and Exchange Secrets.
In 27th FOCS, pages 162–167, 1986.

 (the first paper on secure computation)

 Y. Lindell and B. Pinkas
A Proof of Yao's Protocol for Secure Two-Party Computation,
http://eprint.iacr.org/2004/175.

 (full proof of security)

http://eprint.iacr.org/2004/175
http://eprint.iacr.org/2004/175
http://eprint.iacr.org/2004/175
http://eprint.iacr.org/2004/175

page 3 May 14, 2014

Secure two-party computation - definition

x y

 F(x,y) and nothing else

Input:

Output:

x y As if…

F(x,y) F(x,y)

page 4 May 14, 2014

Does the trusted party scenario make

sense?

x y

F(x,y) F(x,y)

• We cannot hope for more privacy

• Does the trusted party scenario make sense?

• Are the parties motivated to submit their true inputs?

• Can they tolerate the disclosure of F(x,y)?

• If so, we can implement the scenario without a trusted party.

page 6 May 14, 2014

Secure two-party computation - definition

x y

 F(x,y) and nothing else

Input:

Output:

x y

As if…

F(x,y)

Real

world

Ideal

world

page 7 May 14, 2014

Definition

 For every A in the real world, there is an A’ in the ideal

world, s.t. whatever A can do in the real world A’ can do

in the ideal world

 The same for the other party. Need not worry about the

case that both are corrupt.

 Semi-honest case: (A behaves according to the protocol.)

 It is sufficient to require that A is able to simulate the

interaction from its input and output alone.

 In the case of deterministic functionalities, the

outputs are fully determined by the inputs

 It suffices to separately prove

 Correctness

 Simulation: show that can generate view of semi-

honest adversary (corrupted parties’ view), given

inputs and outputs only

 In other words…

8

Simulation based definition of security, for

Deterministic Functionalities in the Semi-honest case

May 14, 2014

 Separately prove the following two statements

 The output of the protocol is indistinguishable from the

output of the functionality

 There exists a simulator S1 such that for any adversary A

controlling P1, the output of A, and the output of S1 given

x1 and f1(x,y), are indistinguishable.

 Namely, {S1(x, f1(x, y))}x,y{0,1}∗ ≡ {viewπ
1(x, y)}x,y{0,1}∗

 (If the view of the adversary controlling P1 in the protocol is

indistinguishable from that generated by the simulator, so is also the

output generated by the adversary.)

9

Deterministic Functionalities

May 14, 2014

 Similarly

 Prove that there exists a simulator S2 such that for any

adversary A controlling P2, the output of A, and the

output of S2 given x2 and f2(x,y), are indistinguishable.

 Namely, {S2(y, f2(x, y))}x,y{0,1}∗ ≡ {viewπ
2(x, y)}x,y{0,1}∗

10

Deterministic Functionalities

May 14, 2014

Functionalities with Output to a Single Party

 In the standard definition of secure computation, both

parties receive (possibly different) outputs.

 It is often simpler to assume that only party P2 receives output.

 This suffices for the general case:

 Any protocol that can be used to securely compute any ppt

functionality f(x,y) where only P2 receives output, can be used to

securely compute any efficient functionality f=(f1,f2) where P1

receives f1(x,y) and P2 receives f2(x,y).

 Given f(x,y)=(f1,f2), we define f ’((x,k),y) = Ek(f1(x,y)), f2(x,y). I.e.,

P1’s input to f’ includes a key k, and the output contains an

encryption of f1 with k, and also f2. P2 can learn this output and

send its first part to P1.

May 14, 2014 page 11

page 12 May 14, 2014

Secure two-party computation of general

functions [Yao]

 First, represent the function F as a Boolean circuit C

 This is always possible

 Sometimes it is easy (additions, comparisons)

 Sometimes the result is inefficient (e.g. for indirect

addressing)

page 13 May 14, 2014

Basic ideas

 A simple circuit is evaluated by

 setting values to its input gates

 For each gate, computing the value of the outgoing wire as a

function of the wires going into the gate.

 Secure computation:

 No party should learn the values of any wires, except for the

output wires of the circuit

 Yao’s protocol

 A compiler which takes a circuit and transforms it to a circuit

which hides all information but the final output.

page 14 May 14, 2014

Garbling the circuit

 Bob (aka P1, or “the constructor”) constructs the circuit,

and then garbles it.

G

wi
0,wi

1 wJ
0,wJ

1

wk
0,wk

1
Wk

0  0 on wire k

Wk
1  1 on wire k

(Alice, P2, will learn one

string per wire, but

not which bit it

corresponds to.)

page 15 May 14, 2014

Gate tables

 For every gate, every combination of input values is
used as a key for encrypting the corresponding output

 Assume G=AND. Bob constructs a table:
 Encryption of wk

0 using keys wi
0,wJ

0

 Encryption of wk
0 using keys wi

0,wJ
1

 Encryption of wk
0 using keys wi

1,wJ
0

 Encryption of wk
1 using keys wi

1,wJ
1

 …and permutes the order of the entries

 Result: given wi
x,wJ

y, can compute wk
G(x,y)

 (encryption can be done using a prf)

page 16 May 14, 2014

The encryption scheme being used (I)

 The encryption must be secure in the sense that

 for every two (known) messages x and y, no adversary can

distinguish an encryption of x from an encryption of y.

 This must hold even if many messages are encrypted with the

same key. Therefore, a one-time pad is not a good choice.

 Motivation: a wire might be used in many gates, and the

corresponding garbled value is used as an encryption key in each

of them.

page 17 May 14, 2014

The encryption scheme being used (II)

 It must hold that there will be negligible probability that an

encryption with one key will fall in the range of encryptions

with another key.

 So that when Alice tries to decrypt the entries in the table, she

will only be successful for a single entry.

 In addition, given a key k, it is must be possible to verify if a

given ciphertext is in the range of k.

 These properties are satisfied by taking a semantically secure

encryption E, and using it to encrypt x by encrypting x|0n.

 Namely, compute Ek(x)=(r, fk(r)  x0n), where f is a prf.

page 18 May 14, 2014

Secure computation

 Bob sends the table of gate G to Alice

 Given, e.g., wi
0,wJ

1, Alice computes wk
0, but doesn’t know the

actual values of the wires.

 Alice cannot decrypt the entries of input pairs different from (0,1)

 For the wires of circuit output:

 Bob does not define “garbled” values

 for the output wires, but rather encrypts

 instead a 0/1 value.

G

wi
0,wi

1 wJ
0,wJ

1

wk
0,wk

1

page 19 May 14, 2014

Secure computation

 Bob sends to Alice

 Tables encoding each circuit gate.

 Garbled values (w’s) of his input values.

 If Alice gets garbled values (w’s) of her input values, she

can compute the output of the circuit, and nothing else.

 Why can’t Bob provide Alice with the keys corresponding to

both 0 and 1 for her input wires?

page 20 May 14, 2014

Alice’s input

 For every wire i of Alice’s input:

 The parties run an OT protocol

 Alice’s input is her input bit (s).

 Bob’s input is wi
0,wi

1

 Alice learns wi
s

 The OTs for all input wires can be run in parallel.

 Afterwards Alice can compute the circuit by herself.

 She decrypts the entries in each gate until finding the entry

which ends with 0n. Then continues to the next layer of

the circuit.

page 21 May 14, 2014

Secure computation – the big picture (simplified)

 Represent the function as a circuit C

 Bob sends to Alice 4|C| encryptions (e.g., 64|C| Bytes)*.

 Alice performs an OT for every input bit. (Can do, e.g. 1000

OTs per sec.)

 Relatively low overhead:

 Constant number of (~1) rounds of communication.

 Public key overhead depends on the size of Alice’s input

 Communication depends on the size of the circuit

 Efficient for medium size circuits!

 (*) Note that using the encryption system we describe earlier requires

longer ciphertexts, but it is possible to use other security assumptions

that result in shorter ciphertexts.

page 22 May 14, 2014

Secure computation – correctness

 Holds since the encryption scheme has the property that

there is negligible probability that an encryption with one key

will fall in the range of encryptions with another key.

 Therefore Alice can always identify the table entry which

corresponds to the actual value computed in the circuit.

 Removing the small error probability:

 When generating the circuit, Bob verifies that all tables always

decrypt to a single value.

 There is a different technique that uses a single additional bit for

signaling.

page 23 May 14, 2014

Secure computation: security (semi-honest case)

 A simulation based proof of security:

 In the protocol:

 Bob sends tables and his own garbled values to Alice

 The parties run OTs where Alice learns garbled values

 Alice computes the output of the circuit and sends it to Bob

 A corrupt Bob: its view in the protocol contains the execution

of the OTs and a single message containing f(x,y) received

from Alice.

page 24 May 14, 2014

Secure computation: security (semi-honest case)

 A corrupt Bob: its view in the protocol contains the execution

of the OTs and a single message containing f(x,y) received

from Alice.

 Since the OTs are secure, there is a simulator which simulates

Bob’s view in the OT given its input to them alone.



The simulator of Bob’s view in Yao’s protocol has inputs

x,f(x,y). It operates in the following way:

 First simulates the messages that Bob sends to Alice. √

 Then simulates Bob’s view in the OT protocols. √

 Then simulates Bob receiving f(x,y) from Alice. √

page 25 May 14, 2014

Secure computation: security (semi-honest case)

 A corrupt Alice, intuition:

 Since OTs are secure, learns one garbled value per input wire.

 In every gate, if she knows only one garbled value of every

input wire, she cannot decrypt more than a single value of

output wire.

 A simulation argument appears at “A Proof of Yao's

Protocol for Secure Two-Party Computation”

 The simulator knows y and f(x,y).

 It must send a garbled circuit to Alice. It cannot construct it

according to the protocol since it does not know x.

page 26 May 14, 2014

Secure computation: security (semi-honest case)

 The simulation

 The simulator knows y and f(x,y).

 Instead of generating a correct circuit, the simulator sends

Alice a “fake” circuit that always computes f(x,y), regardless of

its inputs.

 This is done by constructing gate tables that encrypt the same

garbled value in all 4 entries.

 Therefore regardless of the actual input to the circuit, its output and

all internal values will always be the same.

 The detailed proof shows that the security of the encryptions

ensure that Alice cannot distinguish this circuit from the

correct circuit.

page 27 May 14, 2014

Secure computation: security (semi-honest case)

 More details about the proof

 Show that Alice cannot distinguish the circuit it receives from

the correct circuit.

 First, show that Alice’s view in a real execution is

indistinguishable from a hybrid distribution Hot(x, y) in which

the real oblivious transfers are replaced with simulated ones.

 Then consider a series of hybrids Hi(x,y) in which one gate at

a time is replaced in the real garbled circuit.

 H0(x,y) is equal to Hot(x,y) and contains a real garbled circuit

 H|C|(x,y) contains the fake circuit constructed by S.

 The difference between Hi(x,y) and Hi+1(x,y) is that one more

real table is replaced with a fake one.

page 28 May 14, 2014

Secure computation: security (semi-honest case)

 More details about the proof

 Denote by pi the probability with which Alice outputs 1 when she is
given Hi(x,y) as input.

 Suppose that it is possible to distinguish with probability p between
H0(x,y) and H|C|(x,y). Namely, |p|C| - p0| > p.

 It holds that p|C| - p0 = (p|C| - p|C|-1)+(p|C|-1 - p|C|-2)+…+(p1 – p0)

 Therefore p < |p|C| - p0| |p|C| - p|C|-1|+|p|C|-1 - p|C|-2|+…+|p1 – p0|

 Therefore there is an 1  I < |C| such that |pI+1 – pi|>p/|C|. Namely,
it is possible to distinguish with this probability between Hi(x,y)
and Hi+1(x,y).

 But then it is possible to use the distinguisher between Hi(x,y) and
Hi+1(x,y) in order to break the security of the encryption scheme
(by showing a reduction from breaking the encryption to the
distinguisher).

page 29 May 14, 2014

Secure computation: security (semi-honest case)

 More details about the proof

 If it is possible to distinguish with probability p between

H0(x,y) and H|C|(x,y), then there must be an 1  I < |C| such

that it is possible to distinguish with probability at least p/|C|

between Hi(x,y) and Hi+1(x,y).

 But then it is possible to use the distinguisher between Hi(x,y)

and Hi+1(x,y) in order to break the security of the encryption

scheme (by showing a reduction from breaking the encryption

to the distinguisher).

