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Related papers 

 Related papers: 
 

 A. Yao 
How to Generate and Exchange Secrets. 
In 27th FOCS, pages 162–167, 1986. 

 (the first paper on secure computation) 
 

 Y. Lindell and B. Pinkas 
A Proof of Yao's Protocol for Secure Two-Party Computation, 
http://eprint.iacr.org/2004/175. 

 (full proof of security) 

http://eprint.iacr.org/2004/175
http://eprint.iacr.org/2004/175
http://eprint.iacr.org/2004/175
http://eprint.iacr.org/2004/175
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Secure two-party computation - definition 

x    y 

     F(x,y) and nothing else 

Input: 

Output: 

x    y As if… 

F(x,y) F(x,y) 
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Does the trusted party  scenario make 

sense? 

x    y 

F(x,y) F(x,y) 

• We cannot hope for more privacy 

• Does the trusted party scenario make sense? 

• Are the parties motivated to submit their true inputs? 

• Can they tolerate the disclosure of F(x,y)? 

• If so, we can implement the scenario without a trusted party. 
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Secure two-party computation - definition 

x    y 

          F(x,y) and nothing else 

Input: 

Output: 

x    y 

As if… 

F(x,y) 
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world 

Ideal  

world 



page 7 May 14, 2014 

Definition 

 For every A in the real world, there is an A’ in the ideal 

world, s.t. whatever A can do in the real world A’ can do 

in the ideal world 

 

 The same for the other party. Need not worry about the 

case that both are corrupt. 

 

 Semi-honest case: (A behaves according to the protocol.)  

 It is sufficient to require that A is able to simulate the 

interaction from its input and output alone. 



 In the case of deterministic functionalities, the 

outputs are fully determined by the inputs 

 It suffices to separately prove 

 Correctness 

 Simulation:  show that can generate view of semi-

honest adversary (corrupted parties’ view), given 

inputs and outputs only 

 

 In other words… 
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Simulation based definition of security, for 

Deterministic Functionalities in the Semi-honest case 
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 Separately prove the following two statements 

 The output of the protocol is indistinguishable from the 

output of the functionality 

 

 There exists a simulator S1 such that for any adversary A 

controlling P1, the output of A, and the output of S1 given 

x1 and f1(x,y), are indistinguishable. 

 

 Namely, {S1(x, f1(x, y))}x,y{0,1}∗ ≡ {viewπ
1(x, y)}x,y{0,1}∗  

 (If the view of the adversary controlling P1 in the protocol is 

indistinguishable from that generated by the simulator, so is also the 

output generated by the adversary.) 
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Deterministic Functionalities 
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 Similarly 

 Prove that there exists a simulator S2 such that for any 

adversary A controlling P2, the output of A, and the 

output of S2 given x2 and f2(x,y), are indistinguishable. 

 

 Namely, {S2(y, f2(x, y))}x,y{0,1}∗ ≡ {viewπ
2(x, y)}x,y{0,1}∗ 
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Deterministic Functionalities 
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Functionalities with Output to a Single Party 

 In the standard definition of secure computation, both 

parties receive (possibly different) outputs. 

 It is often simpler to assume that only party P2 receives output. 

 This suffices for the general case:  

 Any protocol that can be used to securely compute any ppt 

functionality f(x,y) where only P2 receives output, can be used to 

securely compute any efficient functionality f=(f1,f2) where P1 

receives f1(x,y) and P2 receives f2(x,y).  

 Given f(x,y)=(f1,f2), we define f ’((x,k),y) = Ek(f1(x,y)), f2(x,y). I.e., 

P1’s input to f’ includes a key k, and the output contains an 

encryption of f1 with k, and also f2. P2 can learn this output and 

send its first part to P1.   
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Secure two-party computation of general 

functions [Yao] 

 First, represent the function F as a Boolean circuit C 

 This is always possible 

 Sometimes it is easy (additions, comparisons) 

 Sometimes the result is inefficient (e.g. for indirect 

addressing) 
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Basic ideas 

 A simple circuit is evaluated by 

 setting values to its input gates 

 For each gate, computing the value of the outgoing wire as a 

function of the wires going into the gate. 

 Secure computation: 

 No party should learn the values of any wires, except for the 

output wires of the circuit 

 Yao’s protocol 

 A compiler which takes a circuit and transforms it to a circuit 

which hides all information but the final output. 
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Garbling the circuit 

 Bob (aka P1, or “the constructor”) constructs the circuit, 

and then garbles it.  

 

G 

wi
0,wi

1 wJ
0,wJ

1 

wk
0,wk

1 
Wk

0  0 on wire k 

Wk
1  1 on wire k 

 

(Alice, P2, will learn one 

string per wire, but 

not which bit it  

corresponds to.) 
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Gate tables 

 For every gate, every combination of input values is 
used as a key for encrypting the corresponding output 

 Assume G=AND. Bob constructs a table: 
 Encryption of wk

0 using keys wi
0,wJ

0 

 Encryption of wk
0 using keys wi

0,wJ
1 

 Encryption of wk
0 using keys wi

1,wJ
0 

 Encryption of wk
1 using keys wi

1,wJ
1 

 …and permutes the order of the entries 

 

 Result: given wi
x,wJ

y, can compute wk
G(x,y) 

 (encryption can be done using a prf) 
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The encryption scheme being used  (I) 

 The encryption must be secure in the sense that  

 for every two (known) messages x and y, no adversary can 

distinguish an encryption of x from an encryption of y.  

 This must hold even if many messages are encrypted with the 

same key.  Therefore, a one-time pad is not a good choice. 

 Motivation:  a wire might be used in many gates, and the 

corresponding garbled value is used as an encryption key in each 

of them. 
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The encryption scheme being used (II) 

 It must hold that there will be negligible probability that an 

encryption with one key will fall in the range of encryptions 

with another key. 

 So that when Alice tries to decrypt the entries in the table, she 

will only be successful for a single entry.  

 In addition, given a key k, it is must be possible to verify if a 

given ciphertext is in the range of k.  

 

 These properties are satisfied by taking a semantically secure 

encryption E, and using it to encrypt x by encrypting x|0n. 

 Namely, compute Ek(x)=( r,  fk(r)  x0n ), where f is a prf. 
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Secure computation 

 Bob sends the table of gate G to Alice 

 Given, e.g., wi
0,wJ

1, Alice computes wk
0, but doesn’t know the 

actual values of the wires. 

 Alice cannot decrypt the entries of input pairs different from (0,1) 

 For the wires of circuit output: 

 Bob does not define “garbled” values 

 for the output wires, but rather encrypts 

 instead a 0/1 value. 

G 

wi
0,wi

1 wJ
0,wJ

1 

wk
0,wk

1 
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Secure computation 

 Bob sends to Alice 

 Tables encoding each circuit gate. 

 Garbled values (w’s) of his input values. 

 

 If Alice gets garbled values (w’s) of her input values, she 

can compute the output of the circuit, and nothing else. 

 Why can’t Bob provide Alice with the keys corresponding to 

both 0 and 1 for her input wires? 
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Alice’s input 

 For every wire i of Alice’s input: 

 The parties run an OT protocol 

 Alice’s input is her input bit (s). 

 Bob’s input is wi
0,wi

1 

 Alice learns wi
s 

 

 The OTs for all input wires can be run in parallel.  

 Afterwards Alice can compute the circuit by herself.  

 She decrypts the entries in each gate until finding the entry 

which ends with 0n.  Then continues to the next layer of 

the circuit. 
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Secure computation – the big picture (simplified) 

 Represent the function as a circuit C 

 Bob sends to Alice 4|C| encryptions (e.g., 64|C| Bytes)*. 

 Alice performs an OT for every input bit.  (Can do, e.g. 1000 

OTs per sec.) 

 

 Relatively low overhead: 

 Constant number of (~1) rounds of communication. 

 Public key overhead depends on the size of Alice’s input 

 Communication depends on the size of the circuit 

 Efficient for medium size circuits!  

 (*) Note that using the encryption system we describe earlier requires 

longer ciphertexts, but it is possible to use other security assumptions 

that result in shorter ciphertexts. 
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Secure computation – correctness 

 Holds since the encryption scheme has the property that 

there is negligible probability that an encryption with one key 

will fall in the range of encryptions with another key. 

 Therefore Alice can always identify the table entry which 

corresponds to the actual value computed in the circuit. 

 

 Removing the small error probability: 

 When generating the circuit, Bob verifies that all tables always 

decrypt to a single value. 

 There is a different technique that uses a single additional bit for 

signaling. 
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Secure computation: security (semi-honest case) 

 A simulation based proof of security:  

 In the protocol: 

 Bob sends tables and his own garbled values to Alice 

 The parties run OTs where Alice learns garbled values 

 Alice computes the output of the circuit and sends it to Bob 

 

 A corrupt Bob: its view in the protocol contains the execution 

of the OTs and a single message containing f(x,y) received 

from Alice.  
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Secure computation: security (semi-honest case) 

 A corrupt Bob: its view in the protocol contains the execution 

of the OTs and a single message containing f(x,y) received 

from Alice.  

 

 Since the OTs are secure, there is a simulator which simulates 

Bob’s view in the OT given its input to them alone.  

  

The simulator of Bob’s view in Yao’s protocol has inputs 

x,f(x,y). It operates in the following way:  

 First simulates the messages that Bob sends to Alice.  √ 

 Then simulates Bob’s view in the OT protocols. √ 

 Then simulates Bob receiving f(x,y) from Alice. √ 
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Secure computation: security (semi-honest case) 

 A corrupt Alice, intuition: 

 Since OTs are secure, learns one garbled value per input wire. 

 In every gate, if she knows only one garbled value of every 

input wire, she cannot decrypt more than a single value of 

output wire. 

 

 A simulation argument appears at “A Proof of Yao's 

Protocol for Secure Two-Party Computation” 

 The simulator knows y and f(x,y). 

 It must send a garbled circuit to Alice. It cannot construct it 

according to the protocol since it does not know x. 
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Secure computation: security (semi-honest case) 

 The simulation 

 The simulator knows y and f(x,y).  

 Instead of generating a correct circuit, the simulator sends 

Alice a “fake” circuit that always computes f(x,y), regardless of 

its inputs.  

 This is done by constructing gate tables that encrypt the same 

garbled value in all 4 entries.  

 Therefore regardless of the actual input to the circuit, its output and 

all internal values will always be the same. 

 The detailed proof shows that the security of the encryptions 

ensure that  Alice cannot distinguish this circuit from the 

correct circuit.  
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Secure computation: security (semi-honest case) 

 More details about the proof 

 Show that Alice cannot distinguish the circuit it receives from 

the correct circuit.  

 First, show that Alice’s view in a real execution is 

indistinguishable from a hybrid distribution Hot(x, y) in which 

the real oblivious transfers are replaced with simulated ones. 

 Then consider a series of hybrids Hi(x,y) in which one gate at 

a time is replaced in the real garbled circuit. 

 H0(x,y) is equal to Hot(x,y) and contains a real garbled circuit 

 H|C|(x,y) contains the fake circuit constructed by S. 

 The difference between Hi(x,y) and Hi+1(x,y) is that one more 

real table is replaced with a fake one.  
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Secure computation: security (semi-honest case) 

 More details about the proof 

 Denote by pi the probability with which Alice outputs 1 when she is 
given Hi(x,y) as input. 

 Suppose that it is possible to distinguish with probability p between 
H0(x,y) and H|C|(x,y). Namely, |p|C| - p0| > p. 

 It holds that p|C| - p0 = (p|C| - p|C|-1)+(p|C|-1 - p|C|-2)+…+(p1 – p0) 

 Therefore p < |p|C| - p0| |p|C| - p|C|-1|+|p|C|-1 - p|C|-2|+…+|p1 – p0| 

 Therefore there is an 1  I < |C| such that |pI+1 – pi|>p/|C|. Namely, 
it is possible to distinguish with this probability  between Hi(x,y) 
and Hi+1(x,y). 

 

 But then it is possible to use the distinguisher between Hi(x,y) and 
Hi+1(x,y) in order to break the security of the encryption scheme 
(by showing a reduction from breaking the encryption to the 
distinguisher). 
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Secure computation: security (semi-honest case) 

 More details about the proof 

 If it is possible to distinguish with probability p between 

H0(x,y) and H|C|(x,y), then there must be an 1  I < |C| such 

that it is possible to distinguish with probability at least p/|C|  

between Hi(x,y) and Hi+1(x,y). 

 

 But then it is possible to use the distinguisher between Hi(x,y) 

and Hi+1(x,y) in order to break the security of the encryption 

scheme (by showing a reduction from breaking the encryption 

to the distinguisher). 


