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Related papers

– Lecture notes from MIT 
http://crypto.csail.mit.edu/classes/6.876/lecture-notes.html

– Clifford Cocks , An Identity Based Encryption Scheme 
based on Quadratic Residues. 
http://www.cesg.gov.uk/site/ast/idpkc/media/ciren.pdf
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Bilinear maps: motivation

• Bilinear maps are the tool of pairing-based 
cryptography
– First major application: an efficient identity-based 

encryption scheme (2001).
– Manu more applications.

• What can they do?
– Establish relationships between cryptographic groups
– Make DDH easy in one of the groups
– Enable to solve the CDH once



4

page 4May 21, 2006 Advanced Topics in Cryptography, Benny Pinkas

Bilinear Maps

• Let G, Gt be cyclic groups of the same order

• A bilinear map from G×G to Gt is a function e: G× G →
Gt, such that 
– ∀ u,v ∈ G, a,b∈ Z,

e(ua,vb) = (e(u,v))ab

• This is true if and only if ∀ u1,u2,v1,v2 ∈ G
– e(u1+u2,v1) = e(u1,v1)⋅e(u2,v1)
– e(u1,v1+v2) = e(u1,v1)⋅e(u1,v2)

• A bilinear map is called a pairing since it associates 
pairs of elements from G with an element in Gt.
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Admissible bilinear maps

• A bilinear map can be degenerate: map everything to 1, 
and therefore e(ua,vb) = 1 = (e(u,v))ab = 1ab

• Let g,g’ be generators of G.
• A bilinear map is called admissible if e(g,g’) generates 

Gt, and e is efficiently computable.

• These are the only maps we care about.
• G and Gt have the same order G(g,1) generates Gt.
• If G=Gt then we get a very powerful primitive.

– But it’s unknown how to construct such a pairing
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Another notation

• It is common to use an additive notation for the group 
G. Namely,
– The operation in G is +
– 1 is a generator of G
– The discrete log problem means that given (g, a⋅g) it is 

hard to find a.

• We will use the multiplicative notation
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Implications to the Discrete Log problem

• The discrete log problem in G is no harder than the 
discrete log problem in Gt.

• Our input is (g,ga) from G, for a random a, and we need 
to find a.

• Suppose that it is easy to compute discrete logarithms 
in Gt. We work as follows:
– gt = e(g,g)
– p = e(g,ga)
– Find the discrete log (in Gt) of p to the base gt

• This works since e(g,ga) = e(g,g)a
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Implications to the Decisional Diffie-Hellman 
problem (DDH)

• The DDH problem in G is easy.
• Our task is to distinguish between 〈g,ga,gb,gab〉, and 
〈g,ga,gb,gc〉, for random a,b,c.

• The distinguisher is given 〈 P,A,B,C〉
– It computes v1=e(A,B) and v2=e(P,C)
– It declares “DDH” if and only if v1=v2

• Indeed, If C=Pab then e(A,B)=e(ga,gb)=e(g,g)ab=e(g,gab)
– And since the mapping e is non-degenerate, this equality 

happens if and only if c=ab.
• Note that we can only solve the DDH in G, and 

therefore we can only solve it once.
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Diffie-Hellman implications

• What about the CDH (Computation Diffie-Hellman) 
problem?
– Bilinear maps are not known to be useful for solving the 

CDH. Therefore this problem might still be hard in G.

• A group G is called a gap Diffie-Hellman group (GDH) if 
the DDH is easy in G but the CDH is hard
– The definition is independent of the use of bilinear maps
– But bilinear maps enable to construct gaps groups
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What groups to use?

• Typically G is an elliptic curve
– An elliptic curve is defined by y2=x3+1 over a finite field Fp.
– There are many types of curves

• The group Gt is normally a finite field
• The bilinear maps are usually the Weil or Tate pairings

– Pretty complicated
– Overhead of the same order as that of exponentiation

• We don’t need to understand the details of 
implementing bilinear pairings in order to use them.
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New problems – cryptographic assumptions

• In order to design new cryptographic protocols based 
on pairings, we need to make new assumptions
– Bilinear Diffie-Hellman: given 〈 g,ga,gb,gab〉 it is hard to  

compute e(g,g)abc (a “three-way Diffie-Hellman, but the 
result is in Gt).

– Decisional Bilinear Diffie-Hellman: it is hard to distinguish 
〈g,ga,gb,gab〉 from 〈g,ga,gb,gc〉

– Similar assumptions when the mapping is e:G1×G2 → Gt
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Intuition

• Whay are bilinear maps so useful?
– They enable to solve the DDH problem, but only once!
– The solution is easy if we have elements in G. But the 

solution itself generates elements in G_t for which cannot 
apply the mapping.

– This level of power enables to construct cryptographic 
protocols, but is not enough for the adversary to attack the 
system.
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Joux’s 3-party Diffie-Hellman protocol

• The goal: let three parties decide on a key using DH
• Can easily do it with in two rounds. We want to do it in 

a single round
• Let G be a group in which DH is hard, and g a 

generator. e:G× G → Gt. Let h=e(g,g).
– Alice picks a random key a. Bob picks b, Carol picks c.
– Alice broadcasts ga, Bob broadcasts gb, Carol broadcasts 

gc.
– Alice computes (e(gb,gc)a = habc. Bob and Carol compute 

habc similarly.
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Security

• The bilinear mapping lets Alice computes hbc from gb

and gc, and then raises it to the power of a.
• An external adversary cannot compute habc from 

ga,gb,gc.
– Cannot compute e(ga,e(gb,gc)), since e(gb,gc) is in Gt and 

not in G.
– This is the Bilinear Diffie-Hellman assumption. (We need 

the Decision Bilinear Diffie-Hellman assumption which 
states that it is impossible to distinguish habc from random.)
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The setting

• Key generation center (KGC)
– Holds the master private key
– Generates public system parameters

• Key derivation: The KGC can provide each user with 
the private key corresponding to his/her name.
– The private key is a function of the name (or an arbitrary 

string) and the master private key
• Encryption: everyone can encrypt messages to Alice. 

The ciphertext is a function of the plaintext, Alice’s 
name, and the public parameters.

• Decryption: Alice uses her private key and the system 
parameters to decrypt messages sent to her
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Boneh and Franklin’s IBE scheme

• Let G be a group of order q in which DH is hard, and g 
a generator of G. e:G× G → Gt. 
– Let h=e(g,g).
– Let H1: {0,1}*→ G, and H2:Gt → {0,1}* be two hash 

functions.
• Setup:

– KGC picks a random s∈ [1,q]. gs is the public key.
• Private Key:

– The KGC gives Bob the private key H1(Bob)s.
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Boneh and Franklin’s IBE scheme

• Encryption:
– To send m to Bob, pick r∈ [1,q].
– Ciphertext = (gr, m ⊕ H2( e( H1(Bob),gs )r )) 

= (gr, m ⊕ H2( e(H1(Bob),g)rs ))

• Decryption:
– Bob has an encrypted message (u,v) and a private key 

w=H1(Bob)s.
– He computes v ⊕ H2(e(w,u)) = m ⊕ H2( e(H1(Bob),g)rs ) ⊕

H2(e(H1(Bob)s, gr)) = m.
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Boneh and Franklin’s IBE scheme

• Intuition:
– The message is encrypted with H2( e(H1(Bob),g)rs )
– Similar to 3-party DH where

• The sender has public key gr, private key r.

• The KGC has public key gs, private key s.

• The recipient has public key H1(Bob), no private key.

• The session key is H1(Bob)rs = hrs log(H(Bob).

– But the KGC gives H1(Bob)s to the recipient, so he can use 
it to find the session key.

– The security proof assumes that H1,H2 are random oracles
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BLS signature scheme

• Boneh, Lynn and Shacham gave a simple, deterministic 
signature scheme based on pairings.
– The signatures are very short.
– Security is proven under the random-oracle model.

• Keys:
– Private key: x. Public key: gx. Hash function H() → G.

• Signature:
– Sign(m) = σ = (H(m))x (in G).

• Verification:
– Check if 〈g,gx,H(m),σ〉 is a DDH tuple. Namely, check if 

e(g,σ)=e(gx,H(m)).
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BLS signature scheme

• Security:
– Unexistentially forgeable
– under adaptive chosen message attack
– in the random oracle model
– assuming that the CDH is hard on certain elliptic curves 

over a finite field of characteristic
• Efficiency:

– signing is fast, one hashing operation and one 
exponentiation.

– Verification requires two pairing computations,
– The signature is just an element in G, which is 154 bits 

long if we use an elliptic curve on F3^97
– half the size of DSA (El Gamal variant) signature in DSA 

(320 bits) with comparable security.
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Multisignature

• Several signers need to sign the same message m.
• Each signer Pi has secret key is Xi and public key Yi = 

gXi.
• Signature: the signature on m is σ= Πi=1,…,nσi, where σi

is the BLS signature. Namely, each signer computes 
σi=(H(m))Xi and then they multiply their signatures.

• Verification:
– As in BLS, accept if e(g,σ) = e(Πi=1,…,n Yi, H(m)) 
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Aggregate signatures

• Several signers want to sign different message 
m1,…,mn. (e.g., certificates.)

• Each signer Pi has secret key is Xi and public key Yi = 
gXi.

• Siganture:
– Frst, each signer computes its signature σi=(H(m

i
))Xi

– The signers then multiply their signatures, σ= Πi=1,…,nσi.
• Verification:

– Accept if e(g,σ) = Πi=1,…,n e(Yi, H(mi))
• This scheme is secure against existential forgery with 

chosen message attacks if the computational Co-DH 
problem is hard: given g, ga (in G), and h (in Gt), it is 
hard to compute ha in Gt.


