Advanced Topics in Cryptography

Lecture 9: Pairing based cryptography, Identity based encryption.

Benny Pinkas

May 21, 2006

Advanced Topics in Cryptography, Benny Pinkas

Related papers

- Lecture notes from MIT
 http://crypto.csail.mit.edu/classes/6.876/lecture-notes.html
- Clifford Cocks, An Identity Based Encryption Scheme based on Quadratic Residues.
 http://www.cesg.gov.uk/site/ast/idpkc/media/ciren.pdf

May 21, 2006

Advanced Topics in Cryptography, Benny Pinkas

Bilinear maps: motivation

- Bilinear maps are the tool of pairing-based cryptography
 - First major application: an efficient identity-based encryption scheme (2001).
 - Manu more applications.
- What can they do?
 - Establish relationships between cryptographic groups
 - Make DDH easy in one of the groups
 - Enable to solve the CDH once

Bilinear Maps

- Let G, G_t be cyclic groups of the same order
- A bilinear map from $G \times G$ to G_t is a function $e: G \times G \rightarrow G_t$, such that
 - \forall u,v \in G, a,b \in Z, e(u^a,v^b) = (e(u,v))^{ab}
- This is true if and only if $\forall u_1, u_2, v_1, v_2 \in G$
 - $e(u_1+u_2,v_1) = e(u_1,v_1) \cdot e(u_2,v_1)$
 - $e(u_1, v_1 + v_2) = e(u_1, v_1) \cdot e(u_1, v_2)$
- A bilinear map is called a pairing since it associates pairs of elements from G with an element in G_t.

May 21, 2006

Advanced Topics in Cryptography, Benny Pinkas

Admissible bilinear maps

- A bilinear map can be *degenerate*: map everything to 1, and therefore $e(u^a, v^b) = 1 = (e(u, v))^{ab} = 1^{ab}$
- Let g,g' be generators of G.
- A bilinear map is called admissible if e(g,g') generates
 G_t, and e is efficiently computable.
- These are the only maps we care about.
- G and G_t have the same order G(g,1) generates G_t.
- If G=G, then we get a very powerful primitive.
 - But it's unknown how to construct such a pairing

May 21, 2006

Advanced Topics in Cryptography, Benny Pinkas

Another notation

- It is common to use an additive notation for the group G. Namely,
 - The operation in G is +
 - 1 is a generator of G
 - The discrete log problem means that given (g, a⋅g) it is hard to find a.
- We will use the multiplicative notation

May 21, 2006

Advanced Topics in Cryptography, Benny Pinkas

Implications to the Discrete Log problem

- The discrete log problem in G is no harder than the discrete log problem in G_t.
- Our input is (g,g^a) from G, for a random a, and we need to find a.
- Suppose that it is easy to compute discrete logarithms in G₁. We work as follows:
 - $-g_t = e(g,g)$
 - $-p = e(g,g^a)$
 - Find the discrete log (in G_t) of p to the base g_t
- This works since $e(g,g^a) = e(g,g)^a$

Implications to the Decisional Diffie-Hellman problem (DDH)

- The DDH problem in G is easy.
- Our task is to distinguish between (g,g^a,g^b,g^{ab}), and (g,g^a,g^b,g^c), for random a,b,c.
- The distinguisher is given (P,A,B,C)
 - It computes $v_1=e(A,B)$ and $v_2=e(P,C)$
 - It declares "DDH" if and only if v₁=v₂
- Indeed, If C=Pab then $e(A,B)=e(g^a,g^b)=e(g,g)^{ab}=e(g,g^{ab})$
 - And since the mapping e is non-degenerate, this equality happens if and only if c=ab.
- Note that we can only solve the DDH in G, and therefore we can only solve it once.

May 21, 2006

Advanced Topics in Cryptography, Benny Pinkas

Diffie-Hellman implications

- What about the CDH (Computation Diffie-Hellman) problem?
 - Bilinear maps are not known to be useful for solving the CDH. Therefore this problem might still be hard in G.
- A group G is called a gap Diffie-Hellman group (GDH) if the DDH is easy in G but the CDH is hard
 - The definition is independent of the use of bilinear maps
 - But bilinear maps enable to construct gaps groups

What groups to use?

- Typically G is an elliptic curve
 - An elliptic curve is defined by $y^2=x^3+1$ over a finite field F_p .
 - There are many types of curves
- The group G_t is normally a finite field
- The bilinear maps are usually the Weil or Tate pairings
 - Pretty complicated
 - Overhead of the same order as that of exponentiation
- We don't need to understand the details of implementing bilinear pairings in order to use them.

New problems – cryptographic assumptions

- In order to design new cryptographic protocols based on pairings, we need to make new assumptions
 - Bilinear Diffie-Hellman: given (g,g^a,g^b,g^{ab}) it is hard to compute e(g,g)^{abc} (a "three-way Diffie-Hellman, but the result is in G_t).
 - Decisional Bilinear Diffie-Hellman: it is hard to distinguish $\langle g, g^a, g^b, g^{ab} \rangle$ from $\langle g, g^a, g^b, g^c \rangle$
 - Similar assumptions when the mapping is $e:G_1 \times G_2 \to G_t$

Intuition

- Whay are bilinear maps so useful?
 - They enable to solve the DDH problem, but only once!
 - The solution is easy if we have elements in G. But the solution itself generates elements in G_t for which cannot apply the mapping.
 - This level of power enables to construct cryptographic protocols, but is not enough for the adversary to attack the system.

Joux's 3-party Diffie-Hellman protocol

- The goal: let three parties decide on a key using DH
- Can easily do it with in two rounds. We want to do it in a single round
- Let G be a group in which DH is hard, and g a generator. e:G× G → G_t. Let h=e(g,g).
 - Alice picks a random key a. Bob picks b, Carol picks c.
 - Alice broadcasts g^a, Bob broadcasts g^b, Carol broadcasts g^c.
 - Alice computes $(e(g^b,g^c)^a = h^{abc}$. Bob and Carol compute h^{abc} similarly.

Security

- The bilinear mapping lets Alice computes hbc from gb and gc, and then raises it to the power of a.
- An external adversary cannot compute habe from ga,gb,gc.
 - Cannot compute e(g^a,e(g^b,g^c)), since e(g^b,g^c) is in G_t and not in G.
 - This is the Bilinear Diffie-Hellman assumption. (We need the Decision Bilinear Diffie-Hellman assumption which states that it is impossible to distinguish habe from random.)

The setting

- Key generation center (KGC)
 - Holds the master private key
 - Generates public system parameters
- Key derivation: The KGC can provide each user with the private key corresponding to his/her name.
 - The private key is a function of the name (or an arbitrary string) and the master private key
- Encryption: everyone can encrypt messages to Alice. The ciphertext is a function of the plaintext, Alice's name, and the public parameters.
- Decryption: Alice uses her private key and the system parameters to decrypt messages sent to her

Boneh and Franklin's IBE scheme

- Let G be a group of order q in which DH is hard, and g a generator of G. e:G× G → G_t.
 - Let h=e(g,g).
 - Let H_1 : {0,1}*→ G, and H_2 : $G_t \to \{0,1\}$ * be two hash functions.
- Setup:
 - KGC picks a random $s \in [1,q]$. g^s is the public key.
- Private Key:
 - The KGC gives Bob the private key H₁(Bob)^s.

May 21, 2006

Advanced Topics in Cryptography, Benny Pinkas

Boneh and Franklin's IBE scheme

• Encryption:

- To send m to Bob, pick $r \in [1,q]$.
- Ciphertext = $(g^r, m \oplus H_2(e(H_1(Bob), g^s)^r))$ = $(g^r, m \oplus H_2(e(H_1(Bob), g)^{rs}))$

Decryption:

- Bob has an encrypted message (u,v) and a private key w=H₁(Bob)^s.
- He computes $v \oplus H_2(e(w,u)) = m \oplus H_2(e(H_1(Bob),g)^{rs}) \oplus H_2(e(H_1(Bob)^s, g^r)) = m.$

Boneh and Franklin's IBE scheme

- Intuition:
 - The message is encrypted with H₂(e(H₁(Bob),g)^{rs})
 - Similar to 3-party DH where
 - The sender has public key g^r, private key r.
 - The KGC has public key gs, private key s.
 - The recipient has public key H₁(Bob), no private key.
 - The session key is $H_1(Bob)^{rs} = h^{rs \log(H(Bob))}$.
 - But the KGC gives H₁(Bob)^s to the recipient, so he can use it to find the session key.
 - The security proof assumes that H₁,H₂ are random oracles

BLS signature scheme

- Boneh, Lynn and Shacham gave a simple, deterministic signature scheme based on pairings.
 - The signatures are very short.
 - Security is proven under the random-oracle model.
- Keys:
 - Private key: x. Public key: g^x . Hash function $H() \rightarrow G$.
- Signature:
 - Sign(m) = σ = (H(m))^x (in G).
- Verification:
 - Check if $\langle g, g^x, H(m), \sigma \rangle$ is a DDH tuple. Namely, check if $e(g,\sigma)=e(g^x,H(m))$.

BLS signature scheme

Security:

- Unexistentially forgeable
- under adaptive chosen message attack
- in the random oracle model
- assuming that the CDH is hard on certain elliptic curves over a finite field of characteristic

Efficiency:

- signing is fast, one hashing operation and one exponentiation.
- Verification requires two pairing computations,
- The signature is just an element in G, which is 154 bits long if we use an elliptic curve on F_{3^97}
- half the size of DSA (El Gamal variant) signature in DSA (320 bits) with comparable security.

Multisignature

- Several signers need to sign the same message m.
- Each signer P_i has secret key is Xi and public key Yi = g^{Xi}.
- Signature: the signature on m is $\sigma = \prod_{i=1,...,n} \sigma_i$, where σ_i is the BLS signature. Namely, each signer computes $\sigma_i = (H(m))^{Xi}$ and then they multiply their signatures.
- Verification:
 - As in BLS, accept if $e(g,\sigma) = e(\Pi_{i=1,...,n} Yi, H(m))$

May 21, 2006

Advanced Topics in Cryptography, Benny Pinkas

Aggregate signatures

- Several signers want to sign different message m₁,...,m_n. (e.g., certificates.)
- Each signer P_i has secret key is Xi and public key Yi = g^{Xi}.
- Siganture:
 - Frst, each signer computes its signature σ_i =(H(m_i))^{Xi}
 - The signers then multiply their signatures, $\sigma = \prod_{i=1,...,n} \sigma_i$.
- Verification:
 - Accept if $e(g,\sigma) = \prod_{i=1,...,n} e(Yi, H(m_i))$
- This scheme is secure against existential forgery with chosen message attacks if the computational Co-DH problem is hard: given g, g^a (in G), and h (in G_t), it is hard to compute h^a in G_t.

May 21, 2006

Advanced Topics in Cryptography, Benny Pinkas