
1

page 1June 18, 2006 Advanced Topics in Cryptography, Benny Pinkas

Advanced Topics in Cryptography

Lecture 13: Search on encrypted data and
on data streams.

Benny Pinkas

2

page 2June 18, 2006 Advanced Topics in Cryptography, Benny Pinkas

Related papers

– Secure indexes, Eu-Jin Goh.
http://crypto.stanford.edu/~eujin/papers/secureindex/index
.html

– Private searching on streaming data, R. Ostrovsky and W.
Skeith.

3

page 3June 18, 2006 Advanced Topics in Cryptography, Benny Pinkas

Search on encrypted data

Search query

Download relevant emails

Remote user stores documents on remote server.

User can access each doc, but wants to minimize communication.

Each document is divided to words.

Remote user searches for docs which contain a specific word.

It receives these words, while server learns nothing.

4

page 4June 18, 2006 Advanced Topics in Cryptography, Benny Pinkas

Desired properties

• Security (note that we should only provide security for the
remote user, not for the server)
– Secrecy: encryption scheme is provably secure
– Controlled search: server cannot search for arbitrary words
– Query isolation: a search for one word does not leak

information about other words
– Hidden queries: a search does not reveal the search words

• Efficiency
– Low computation overhead
– Low space and communication overhead
– Low management overhead

5

page 5June 18, 2006 Advanced Topics in Cryptography, Benny Pinkas

Two approaches to search

• Even without taking security into account, there are two
possible ways to do search
– Search sequentially over all stored data
– Use an index

• We will see today a solutions for index based search
• Index based search requires O(1) search time
• The search will be based on

– Bloom filters – efficient tests for group membership
– PRFs

6

page 6June 18, 2006 Advanced Topics in Cryptography, Benny Pinkas

Bloom filters

• An m bit array B represents a set S={S1,…,Sn}
• Uses r independent hash functions

– h1,…,hr : {0,1}* → [1,m]

• Initially, all bits in the array B are set to 0.
• Insertion: to insert a word x

– Compute i1=h1(x),…,ir=hr(x)
– Set B[i1]=1, …, B[ir]=1 (if B[i] is already set to 1, it is not

changed)
• Testing: to test if a word x is in the set

– Compute i1=h1(x),…,ir=hr(x)
– Output Yes iff B[i1] ∧ … ∧ B[ir] = 1.

7

page 7June 18, 2006 Advanced Topics in Cryptography, Benny Pinkas

Bloom filters

• If x∈ S then the test always returns “Yes”
• False positives:

– If x is not in S then the test might return “Yes” if all B[i]
corresponding to x were set by other words in S.

– The false positives rate depends on the relation between
r,n and m.

8

page 8June 18, 2006 Advanced Topics in Cryptography, Benny Pinkas

Bloom filters - parameters

• Bounding the probability of false positives
– Inserting n documents to an m bit Filter, using r functions.
– The probability that a bit remains 0 is (1-1/m)rn≈ e-rn/m

– The probability of a false positive is therefore (1-e-rn/m)r

– Assume that n and m are fixed. The above probability is
minimized with r=(m/n)⋅ln2, and is 2-r. Therefore
r=log(1/false error probability).

• Bloom filters have many other nice properties
– Easy to add items
– Hard to remove items
– Easy to merge Bloom filters

9

page 9June 18, 2006 Advanced Topics in Cryptography, Benny Pinkas

Keyword search using Bloom filters

• First (insecure) approach
– The user uses a PRF F, with different keys k1,…,kr which

it keeps secret.
– For every word w, define WD(w) = 〈Fk1(w),…,Fkr(w)〉
– For a document D containing words w1,..,wL, set to 1 the

bits in B corresponding to the indices in
WD(w1),…,WD(wL).

– Send the documents and the array B to the server.
– Search:

• Given a search word x, compute and send WD(x)=
〈Fk1(x),…,Fkr(x)〉 to the server.

• The server checks each document, to see if in the
corresponding Bloom filter B all these bits are set to 1.

10

page 10June 18, 2006 Advanced Topics in Cryptography, Benny Pinkas

Problems with the previous solution

• A word x results in the same set of indices WD(x) for
each document in which it appears.

• The server cannot know which words appear in each
document, but it can check for similarity between
documents.

11

page 11June 18, 2006 Advanced Topics in Cryptography, Benny Pinkas

The construction

• Initialization: choose a master key 〈k1,…,kr〉
• Trapdoor: For a word w, search is enabled using the

trapdoor Tw=〈 Fk1(w),…,Fkr(w)〉
• Build index: given a document D with identifier DID and

words w1,…,wt, do for each wi
– Compute x1=Fk1(wi) ,…, xr=Fkr(wi)
– Compute indices yD

1=Fx1(DID) ,…, yD
r=Fxr(DID)

– Set the bits yD
1,…,yD

r in the Bloom filter B to 1.
– Let u be an upper bounds on the number of words in a

document, and v be the number of unique words in D.
Choose with repetition (u-v)r random bits in B, and set to 1.

• Search for w:
– Provide Tw to the server. For every D, server uses Tw to

compute yD
1,…,yD

r and check if they are all 1.

12

page 12June 18, 2006 Advanced Topics in Cryptography, Benny Pinkas

Overhead

• r is set to be log(1 / false positive probability)
– r=10 results in error probability of 1/1024

• r=(m/n)⋅ln2
– Therefore, for a document with 2000 unique words, need

to set m to about 28000 bits, or 3.6 kilobytes.

• The PRF can be implemented using very efficiently
(say, using HMAC-SHA1).

13

page 13June 18, 2006 Advanced Topics in Cryptography, Benny Pinkas

Properties

• Easy addition of words to documents
• Short trapdoor (k_1,…,k_r)
• The document itself can be compressed and then

encrypted (unlike the search methods we learned last
week)

• Variable length words

14

page 14June 18, 2006 Advanced Topics in Cryptography, Benny Pinkas

Private searching on streaming data

• Motivation:
– The intelligence community monitors data (e.g., email

messages) using important keywords.
– The keywords themselves are confidential
– They therefore need to gather all the data, and do the

filtering in house.
– It is more efficient to let the ISPs do the filtering, but this

would reveal the keywords to the ISPs.
– Drawbacks of the current practice:

• Communication, processing.

• Privacy.

15

page 15June 18, 2006 Advanced Topics in Cryptography, Benny Pinkas

Requirements

• The search algorithm is run by an untrusted party
– The search algorithm must be kept secret
– The results must be kept secret
– For efficiency, the size of the query must be independent

of the size of the stream, but it might depend on the size of
the dictionary of possible search words.

16

page 16June 18, 2006 Advanced Topics in Cryptography, Benny Pinkas

Scenario

• The client generates a public key and a private key.
• The client sends a “search program” to a server.
• The server applies the program to a data stream.
• The output of the program is an encrypted buffer which

is sent to the client.
• The client uses the private key to learn the output.

• Note that the size of the encrypted output buffer must
not reveal the number of matches.

17

page 17June 18, 2006 Advanced Topics in Cryptography, Benny Pinkas

Basic scheme based on Paillier’s homomorphic
encryption

• Key generation: generate keys for Paillier’s scheme.
• Filter generation:

– Assume that the size of each document can fit as a plaintext
for the encryption scheme (no problem, see below).

– The filter consists of
• A buffer with 2cm blocks, each with two encryptions, 〈E(1),E(1)〉.
• For each word w in the (English) dictionary, ew=E(1) if w is a

searchword, and ew=E(0) otherwise.

– Search:
• Let d1,..,dL be the words in document D.
• Compute v = Πi=1…L edi. (The result is E(j), where j is the number

of occurrences of searchwords in D.)
• Compute E(vD), and multiply E(v),E(vD) into c random locations

in the buffer.

18

page 18June 18, 2006 Advanced Topics in Cryptography, Benny Pinkas

Basic scheme

• Decryption:
– Decrypt B one block at a time.

• If the block is of the form (0,0) then disregard it

• If it is of the form (s,sD), then retrieve document D.

• Problems:
– The document should fit as a plaintext for Paillier’s scheme

• Luckily, the Damgard-Jurick variant of Paillier uses a ciphertext
of size n^{d+1} to encrypt plaintexts of size n^d.

– Collisions:
• What if two documents are mapped to the same block, which

is now of the form (s+s’,sD+s’D’)?

