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Administrative Details

• Grade
– Based on homeworks (might include a final take 

home exam)
• Office hours: Wednesday, 12-13.
• Email: benny@cs.haifa.ac.il
• Web page: 

http://www.pinkas.net/courses/atc/2006/index.html

• Goal: Learn a selection of advanced topics in 
cryptography
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Course Outline

• Course Outline
– Cryptography is more than just encryption/signatures:

• Oblivious transfer, secure computation.

• Privacy preserving database operations: Private information 
retrieval (PIR), computing intersections, keyword search.

• Search on encrypted data. 

– Advanced topics in encryption:
• Encryption with chosen-ciphertext security.

• Homomorphic encryption.

• Pairing based cryptography. Identity based encryption (IBE). 
Signature schemes.

• Broadcast encryption.

• Side channel attacks.
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Today Lecture: Oblivious Transfer

• Web resources:
– Ronald Cramer’s lecture notes, 

http://homepages.cwi.nl/~cramer/papers/CRAMER_revise
d.ps. 

– Boaz Barak’s lecture 
http://www.cs.princeton.edu/courses/archive/fall05/cos433
/lec22.pdf

– Ben Lynn’s page 
http://rooster.stanford.edu/~ben/crypto/ot.php

– Naor, Pinkas, “Computationally Secure Oblivious Transfer”
http://www.springerlink.com/index/10.1007/s00145-004-
0102-6
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An application: computing “AND” privately

• Two players, P1 and P2, have binary inputs a and b.
• They wish to compute a AND b without revealing any 

other information about their inputs.

• If P1’s input is a=0, and he learns that (a AND b) = 0, 
he does not learn whether P2’s input is 0 or 1.

• This is the first example of “secure computation” that 
we will learn

• Applications?
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1-out-of-2 Oblivious Transfer

• Two players: sender and receiver.
– Sender has two inputs, x0, x1.
– Receiver has an input j ∈ {0,1}.

• Output:
– Receiver learns xj and nothing else. 
– Sender learns nothing about j.

• Depending on the OT variant, the inputs x0,x1 could be 
strings or bits.

• Suppose that we have a construction of bit OT, how 
can we solve the AND computation problem?
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Computing “AND” Privately using OT

• P1 plays the sender’s part, P2 is the receiver. 
– P1 sets the sender’s inputs to be x0=0, x1=a.
– P2 sets the receiver’s input to be j=b.

• They run an OT protocol, and P2 sends the final 
answer to P1.

• The output is (1-j)·x0+j·x1 = (1-b)·0+b·a = a·b.
• Privacy (hand-waving):

– If b=0 then the result that P2 obtains in the OT protocol is 
always 0 and does not reveal anything about a.

– If a=0 then the result obtained in the OT protocol is always 
0. When it is forwarded to P1 it does not reveal anything 
about b.
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Computing “AND” Privately using OT

• Privacy:
– We show that P2 does not learn more than the “AND”

result. We do that by showing that given the output of the 
“AND” function, it is possible to provide P2 with its “view”
in the “AND” protocol (namely, the output of the OT).

– Proof: we receive the output of the “AND” function and 
construct the input of the server (P1) in the OT protocol.  
Therefore P2’s output in the OT protocol is a function of 
the “AND” result.
• input:   (a AND b)
• We set x0=0, x1=a AND b.
• The output of the protocol is as in the original protocol.

– How can we show a similar argument showing that P1 
does not learn more than the “AND” result? 
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Security definitions

• We must first specify the power of the adversaries.
• Semi-honest vs. malicious adversaries:

– Semi-honest (honest but curious) adversaries follow the 
protocol, but might try to learn additional information from 
the messages they receive during protocol execution.

– Malicious adversaries might behave arbitrarily.
– For instance, if the protocol requires P1 to send to P2 a 

random number z, a malicious P1 might define z by 
choosing a random y and defining z=Enc(y).

• We can now define what it means for an OT protocol to 
be secure. These definitions can be applied to both 
semi-honest and malicious adversaries.
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Security Definitions

• Now we must state what it means not to learn anything 
more than the output of the protocol.

• For the receiver’s security, this is easy, since the 
sender receives no output.

• As for sender’s security, this is more tricky.
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Security Definitions

• Receiver’s security – indistinguishability
– For any values of x0,x1, the sender cannot distinguish 

between the case that the receiver’s input is 0 and the 
case that it is 1.

• Sender’s security – comparison with the ideal model
– The receiver should only learn the defined output, as if 

there was an ideal implementation of OT.
– Ideal implementation:

• There is a third trusted party (TTP). 

• The TTP receives x0,x1 from the sender, and j from the 
receiver. It sends xj to the receiver.
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Security Definitions

• Definition of sender’s security:
– For every algorithm A’ that the receiver might run in the real 

implementation of oblivious transfer
– there is an algorithm A’’ that the receiver can run in the ideal 

implementation
– such that for any values of x0,x1 the outputs of A’ and A’’ are 

indistinguishable.
– Namely, the receiver in the real implementation does not 

learn anything more than the receiver in the ideal 
implementation.

• These definitions do not handle delicate issues, such as
– whether the receiver “knows” j or the sender “knows” x0,x1

– Whether the parties are committed to their inputs
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Constructions of OT

• There is no OT protocol which provides unconditional 
security for both parties.

• Namely, information theoretic security which does not 
depend on any computation assumption (just like a one-
time-pad).

• We show this by showing that there is no AND protocol 
which provides unconditional security for both parties 
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Impossibility of achieving unconditional security

• Suppose that there is an AND protocol (Between P1 
and P2, with inputs a and b) with unconditional security

• Let T be a transcript of all messages sent in the protocol.
• The parties use random inputs R1 and R2, and given 

these inputs the transcript T is a deterministic function.

• Suppose that a=0.
• If b=0, then there exists a R’1 s.t. if P1 has inputs a=1 and R’1, 

the protocol would have produced the same transcript T.
• If b=1, then there cannot be any R’’1 s.t. if P1 has inputs a=1 

and R’’1 the protocol results in the transcript T (this is because 
the output of the protocol in this case is “1”).

• P1 can search over all possible values for R1 and check if 
running the protocol with a=1 and any of them results in T. If 
there is such an R1 then it concludes that b=0.

page 15March 5, 2006 Introduction to Cryptography, Benny Pinkas

The Even-Goldreich-Lempel 1-out-of-2 OT 
construction

• Setting:
– Sender has two inputs, x0, x1.
– Receiver has an input j ∈ {0,1}.

• Protocol:
– Receiver chooses a random public/private key pair (E,D).
– It sets PKj=E, and chooses PK1-j at random from the same 

distribution as that of public keys*. It then sends (PK0,PK1) 
to the sender. 

– The sender encrypts x0 with PK0, and x1 with PK1, and 
sends the results to the receiver. 

– The receiver decrypts xj.
– Why is this secure against semi-honest adversaries?

• (*) It is required that it is possible to sample items with the exact 
distribution of public keys,  and do this without knowing how to decrypt 
the resulting ciphertexts.
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The Bellare-Micali Construction

• Preliminaries: 
– Gq is a subgroup of order q of Zp*, where p is prime and 

p=2q+1.
– The OT protocol is secure assuming that the Diffie-

Hellman assumption holds for Gq.
– The Computational Diffie-Hellman assumption (CDH) is 

that the following problem is hard: The input contains a 
generator g and values ga ,gb generated with random 
a,b∈[1,q]. The task is to find z=ga·b.

– Recall also the Decisional Diffie-Hellman problem: The 
input contains a generator g and values ga ,gb generated 
with random a,b∈[1,q]; and a pair (z,z’) where one of (z,z’) 
is ga·b and the other is gc (for a random c). The task is to 
tell which of (z,z’) is ga·b. 
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The Bellare-Micali Construction

• Initialization: The sender chooses a random C in Zq.
• Protocol:

– The receiver picks a random k∈[1,q], sets public keys 
PKj=gk, and PK1-j=C/PKj. It sends PK0 to the sender.

– The sender computes PK1=C/PK0. Chooses random r0,r1.
– Generates El Gamal encryptions: E0 = (gr0,H((PK0)r0)⊕x0), 

E1 = (gr1,H((PK1)r1)⊕x1) and sends them to the receiver.
– The receiver computes H((PKj)rj) and decrypts Ej.

• Security:
– Sender cannot learn anything about j (unconditionally).
– It’s obvious that the receiver cannot compute the discrete 

logs of both PK0 and PK1.
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The Bellare-Micali Construction

• A semi-honest receiver
– Picks a random k∈[1,q], sets public keys PKj=gk, and    

PK1-j=C/PKj. (I.e., picks PK1-j at random.)
– Ej = (grj, H((PKj)rj) ⊕ xj)
– If the DDH assumption holds, the receiver cannot 

distinguish (PKj)rj from random.
– A malicious receiver:

• Cannot know discrete logs of both PK0 and PK1.

• But, might know some partial information about the discrete 
log of both PK0 and PK1. (We don’t know how it can do this, 
but this information might reveal something about the 
plaintexts.)

• Security can be proven assuming that H() is a random oracle. 

page 19March 5, 2006 Introduction to Cryptography, Benny Pinkas

OT without random oracles

• Security is based on the DDH assumption alone.
• Zp*, q, and sender’s and receiver’s inputs are as before. 
• Receiver

– chooses random a,b,c1-j∈[1,q], and defines cj=ab (mod q). 
– It sends to the sender (ga, gb, gc0, gc1).

• The sender
– Certifies that gc0≠gc1. Chooses random s0,r0,s1,r1∈[1,q].
– Defines w0=(ga)s0gr0. Encrypts x0 with the key (gc0)s0(gb)r0. 
– Defines w1=(ga)s1gr1. Encrypts x1 with the key (gc1)s1(gb)r1.
– Sends w0, w1 and the encryptions to receiver.

• Receiver computes (wj)b and decrypts xj.
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Security

• Receiver’s security is based on the DDH assumption: 
sender cannot decide if gc0 or gc1 are equal to gab.

• Sender security is unconditional:
– Suppose that j=0. Need to show that x1 is secure.
– Denote s=s1, r=r1.
– Receiver obtains w1=(ga)sgr=gas+r , and encryption with the 

key k1=(gc)s(gb)r=gcs+br. It’s also known that c≠ab.
– We will show (on the board) that regardless of the choice 

of a,b,c, the pair (w1,k1) is uniformly distributed.
– Therefore w1 leaks nothing about the key k1.
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1-out-of-N OT

• A generalization of 1-out-of-2 OT:
– Sender has N inputs, x0,…xN.
– Receiver has an input j ∈ {1,2,…,N}.

• Output:
– Receiver learns xj and nothing else.
– Sender learns nothing about j.

• We would like to construct 1-out-of-N OT, or reductions 
from 1-out-of-N OT to 1-out-of-2 OT.
– It was shown that any such reduction which provides 

unconditional security requires at least N-1 OTs.
– Since OT has a high computational overhead, we would 

like to do better than that.
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A recursive protocol for 1-out-of-N OT

• The reduction uses a pseudo-random function Fk().
– It holds that if k is chosen at random and kept secret, no 

adversary can distinguish between (x,Fk(x)) and a random 
value, for every x.

• The protocol:
– Assume N=m×m. Denote inputs as { xi,j } 1≤i,j ≤m .
– The sender prepares 2m keys, R1,…,Rm,C1,…,Cm. It 

computes encryptions Yi,j=Xi,j ⊕ FRi(j) ⊕ FCj(i).
– The receiver runs two 1-out-of-m OT protocols to learn Ri

and Cj. Corresponding to the item that it wants to learn.
– The sender sends all Yi,j to the receiver, which decrypts 

the item it is interested in. 
• We can reduce 1-out-of-m OT to 1-out-of-√m OT, etc.


