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Related papers

• 1-out-of-N oblivious transfer

– M. Naor and B. Pinkas
Computationally Secure Oblivious Transfer
Journal of Cryptology, Vol. 18, No. 1, 2005. 

• Secure Computation

– A. Yao
How to Generate and Exchange Secrets.
In 27th FOCS, pages 162–167, 1986.
(the first paper on secure computation)

– D. Malkhi, N. Nisan, B. Pinkas and Y. Sella,
Fairplay - A Secure Two-Party Computation System, Proceedings of Usenix
Security '2004.
(efficient implementation of two-party secure computation)

– Y. Lindell and B. Pinkas
A Proof of Yao's Protocol for Secure Two-Party Computation, 
http://eprint.iacr.org/2004/175.
(full proof of security)



3

page 3March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

1-out-of-N OT

• A generalization of 1-out-of-2 OT:
– Sender has N inputs, x0,…xN.
– Receiver has an input j ∈ {1,2,…,N}.

• Output:
– Receiver learns xj and nothing else.
– Sender learns nothing about j.

• We would like to construct 1-out-of-N OT, or reductions 
from 1-out-of-N OT to 1-out-of-2 OT.
– It was shown that any such reduction which provides 

unconditional security requires at least N-1 OTs.
– Since OT has a high computational overhead, we would 

like to do better than that.
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Construction 1: A recursive protocol for 1-out-of-N OT

• The reduction uses a pseudo-random function Fk().
– It holds that if k is chosen at random and kept secret, no 

adversary can distinguish between (x,Fk(x)) and a random 
value, for every x.

• The protocol reduces 1-out-of-m OT to 1-out-of-√m OT. 
This can done recursively.
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A recursive protocol for 1-out-of-N OT

Sender’s original input:

X1,1 X1,2

X2,1

Xm,1

X1,m

Xm,m

…..

…..

…..

…..
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A recursive protocol for 1-out-of-N OT

C1 C2                  Cj Cm

R2

Ri

R1

Rm

Yi,j=Xi,j ⊕ FRi(j) ⊕ FCj(i).

Y1,1 Y1,2

Y2,1

Ym,1

Y1,m

Ym,m

…..

…..

…..

…..

Sender replaces each Xi,j
with its encryption using 
the keys Ri and Cj

no value of F() is 
used more than 
once
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A recursive protocol for 1-out-of-N OT

C1 C2                  Cj Cm

R2

Ri

R1

Rm

Y1,1 Y1,2

Y2,1

Ym,1

Y1,m

Ym,m

…..

…..

…..

…..

- Receiver uses two invocations 
of 1-out-of-m OT to learn Ri and 
Cj.

- Sender sends all Y values

- Receiver decrypts Yi,j and 
learns Xi,j

- Every other Y value is 
encrypted with at least one key 
unknown to the receiver
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Construction 2: a reduction to 1-out-of-2 OT

• Assume N=2n. The receiver’s input is j=jn,…,j1.
• Preprocessing: the sender prepares 2n keys 

– (k1,0,k1,1), (k2,0,k2,1),…, (kn,0,kn,1).
– and encryptions Yi =Xi ⊕ FK_{1,i1}(i) ⊕ … ⊕ FK_{1,in} (i)

• (namely, Xi is encrypted using the keys corresponding to the 
bits of i).

• For each 1 ≤ s ≤ n, the parties run a 1-out-of-2 OT:
– The sender’s input is (ks,0,ks,1).
– The receiver’s input is js.

• The sender sends Y1,…,Yn to the receiver.
• The receiver reconstructs xj.

• Why can’t we use Yi =Xi ⊕ K1,i1(i) ⊕ … ⊕ K1,in(i) ?
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Analysis

• Overhead:
– N=logN invocations of 1-out-of-2 OT (this is the bulk of the 

overhead).
– The preprocessing stage requires NlogN invocations of 

the pseudo-random function F().
• Receiver privacy (hand-waving):

– Since the 1-out-of-2 OTs do not leak information about the 
receiver’s input.

• Sender privacy:
– It can be shown that if the receiver learns about more than 

a single item, then either the 1-out-of-2 OT is not secure, 
or F() is not pseudo-random.
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Applications

• Database queries

• Checking the size of a search engine index??
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Secure two-party computation - definition

x y

F(x,y) and nothing else

Input:
Output:

x yAs if…

F(x,y) F(x,y)

Examples…
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Does the trusted party  scenario make sense?

x y

F(x,y) F(x,y)

• We cannot hope for more privacy
• Does the trusted party scenario make sense?

• Are the parties motivated to submit their true inputs?
• Can they tolerate the disclosure of F(x,y)?

• If so, we can implement the scenario without a trusted 
party.
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Fairness, aka early termination

• Suppose both parties (A and B) need to learn the 
output

• Assume that the last message in the protocol goes from 
A to B

• A malicious A does not send that message 
– ⇒ B does not learn output

• There is no perfect solution to this problem. However, 
this corrupt behavior is detectable.
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Secure two-party computation - definition

x y

F(x,y) and nothing else

Input:
Output:

x y

As if…

F(x,y)

Real 
world

Ideal 
world
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Definition

• For every A in the real world, there is an A’ in the ideal 
world, s.t. whatever A can compute in the real world. A’
can compute in the ideal world

• The same for B. Need not worry about the case the 
both are corrupt.

• Semi-honest case: (A’ behaves according to the 
protocol.) 
– It is sufficient to require that A’ is able to simulate the 

interaction from the output alone.
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Examples of Simple Privacy Preserving Primitives

• Reasonably efficient solutions satisfying the 

definition above.

• Is  X > Y? Is  X = Y?

• What is X ∩ Y? What is median of X ∪ Y?

• Auctions (negotiations). Many parties, 

private bids. Compute the winning bidder 

and the sale price, but nothing else.

• Add privacy to existing data mining algs.
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Secure two-party computation of general functions [Yao]

• First, represent the function F as a Boolean circuit C
• It’s always possible
• Sometimes it’s easy (additions, comparisons)
• Sometimes the result is inefficient (e.g. for indirect 

addressing)
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Basic ideas

• A simple circuit is evaluated by
– setting values to its input gates
– For each gate, computing the value of the outgoing wire 

as a function of the wires going into the gate.
• Secure computation:

– No party should learn the values of any wires, except for 
the output wires of the circuit

• Yao’s protocol
– A compiler which takes a circuit and transforms it to a 

circuit which hides all information but the final output.
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Garbling the circuit

• Bob (aka “the constructor”) constructs the circuit, and 
then garbles it. 

G

wi
0,wi

1 wJ
0,wJ

1

wk
0,wk

1
Wk

0 ≡ 0 on wire k
Wk

1 ≡ 1 on wire k

(Alice will learn one
string per wire, but
not which bit it 
corresponds to.)
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Gate tables

• For every gate, every combination of input values 
is used as a key for encrypting the corresponding
output

• Assume G=AND. Bob constructs a table:
– Encryption of wk

0 using keys wi
0,wJ

0

– Encryption of wk
0 using keys wi

0,wJ
1

– Encryption of wk
0 using keys wi

1,wJ
0

– Encryption of wk
1 using keys wi

1,wJ
1

– …and permutes the order of the entries

• Result: given wi
x,wJ

y, can compute wk
G(x,y)

– (encryption can be done using a prf)
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The encryption scheme being used

• The encryption scheme must be secure even if many 
messages are encrypted with the same key
– Therefore, a one-time pad is not a good choice.
– Motivation: a wire might be used in many gates, and the 

corresponding garbled value is used as an encryption key 
in each of them.

• It must hold that a random string happens to be a 
correct ciphertext only with negligible probability.
– So that when Alice tries to decrypt the entries in the table, 

she will only be successful for on entry. 
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Secure computation

• Bob sends the table of gate G to Alice
• Given, e.g., wi

0,wJ
1, Alice computes wk

0, but doesn’t know the 
actual values of the wires.

• Alice cannot decrypt the entries of input pairs different from 
(0,1)

• For the wires of circuit output:
– Bob does not define “garbled” values

for the output wires, but rather encrypts
a 0/1 value.

G

wi
0,wi

1 wJ
0,wJ

1

wk
0,wk

1
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Secure computation

• Bob sends to Alice
– Tables encoding each circuit gate.
– Garbled values (w’s) of his input values.

• If Alice gets garbled values (w’s) of her input values, 
she can compute the output of the circuit, and 
nothing else.
– Why can’t the Bon provide Alice with the keys 

corresponding to both 0 and 1 for her input wires?
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Alice’s input

• For every wire i of Alice’s input:
– The parties run an OT protocol
– Alice’s input is her input bit (s).
– Bob’s input is wi

0,wi
1

– Alice learns wi
s

• The OTs for all input wires can be run in parallel. 
• Afterwards Alice can compute the circuit by herself. 
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Secure computation – the big picture (simplified)

• Represent the function as a circuit C

• Bob sends to Alice 4|C| encryptions (e.g., 50|C| Bytes).

• Alice performs an OT for every input bit.  (Can do, e.g. 
100 OTs per sec.)

• Relatively low overhead:
– Constant number of (~1) rounds of communication.
– Public key overhead depends on the size of Alice’s input
– Communication depends on the size of the circuit
– Efficient for medium size circuits! 
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Secure computation: security (semi-honest case)

• In the protocol:
– Bob sends tables to Alice
– The parties run OTs where Alice learns garbled values
– Alice computes the output of the circuit

• A corrupt Bob: sees the execution of the OTs. If OTs are secure 
learns nothing about Alice’s input.

• A corrupt Alice:
– Since OTs are secure, learns one garbled value per inptu wire.
– In every gate, if she knows only one garbled value of every input wire, 

she cannot decrypt more than a single value of output wire.
– A simulation argument appears at “A Proof of Yao's Protocol for 

Secure Two-Party Computation”
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Example

• Comparing two N bit numbers

• What’s the overhead?
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Applications

• Two parties. Two large data sets.
• Max?
• Mean? 
• Median?
• Intersection?
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Conclusions

• If the circuit is not too large:
– Efficient secure two-party computation.
– Efficient multi-party computation with two semi-trusted 

parties.
– An “open” question: >2 semi-trusted parties.

• If the circuit is large: we currently need ad-hoc 
solutions. 


