
1

page 1March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Advanced Topics in
Cryptography

Lecture 2: oblivious transfer, two-
party secure computation

Benny Pinkas

2

page 2March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Related papers

• 1-out-of-N oblivious transfer

– M. Naor and B. Pinkas
Computationally Secure Oblivious Transfer
Journal of Cryptology, Vol. 18, No. 1, 2005.

• Secure Computation

– A. Yao
How to Generate and Exchange Secrets.
In 27th FOCS, pages 162–167, 1986.
(the first paper on secure computation)

– D. Malkhi, N. Nisan, B. Pinkas and Y. Sella,
Fairplay - A Secure Two-Party Computation System, Proceedings of Usenix
Security '2004.
(efficient implementation of two-party secure computation)

– Y. Lindell and B. Pinkas
A Proof of Yao's Protocol for Secure Two-Party Computation,
http://eprint.iacr.org/2004/175.
(full proof of security)

3

page 3March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

1-out-of-N OT

• A generalization of 1-out-of-2 OT:
– Sender has N inputs, x0,…xN.
– Receiver has an input j ∈ {1,2,…,N}.

• Output:
– Receiver learns xj and nothing else.
– Sender learns nothing about j.

• We would like to construct 1-out-of-N OT, or reductions
from 1-out-of-N OT to 1-out-of-2 OT.
– It was shown that any such reduction which provides

unconditional security requires at least N-1 OTs.
– Since OT has a high computational overhead, we would

like to do better than that.

4

page 4March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Construction 1: A recursive protocol for 1-out-of-N OT

• The reduction uses a pseudo-random function Fk().
– It holds that if k is chosen at random and kept secret, no

adversary can distinguish between (x,Fk(x)) and a random
value, for every x.

• The protocol reduces 1-out-of-m OT to 1-out-of-√m OT.
This can done recursively.

5

page 5March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

A recursive protocol for 1-out-of-N OT

Sender’s original input:

X1,1 X1,2

X2,1

Xm,1

X1,m

Xm,m

…..

…..

…..

…..

6

page 6March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

A recursive protocol for 1-out-of-N OT

C1 C2 Cj Cm

R2

Ri

R1

Rm

Yi,j=Xi,j ⊕ FRi(j) ⊕ FCj(i).

Y1,1 Y1,2

Y2,1

Ym,1

Y1,m

Ym,m

…..

…..

…..

…..

Sender replaces each Xi,j
with its encryption using
the keys Ri and Cj

no value of F() is
used more than
once

7

page 7March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

A recursive protocol for 1-out-of-N OT

C1 C2 Cj Cm

R2

Ri

R1

Rm

Y1,1 Y1,2

Y2,1

Ym,1

Y1,m

Ym,m

…..

…..

…..

…..

- Receiver uses two invocations
of 1-out-of-m OT to learn Ri and
Cj.

- Sender sends all Y values

- Receiver decrypts Yi,j and
learns Xi,j

- Every other Y value is
encrypted with at least one key
unknown to the receiver

8

page 8March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Construction 2: a reduction to 1-out-of-2 OT

• Assume N=2n. The receiver’s input is j=jn,…,j1.
• Preprocessing: the sender prepares 2n keys

– (k1,0,k1,1), (k2,0,k2,1),…, (kn,0,kn,1).
– and encryptions Yi =Xi ⊕ FK_{1,i1}(i) ⊕ … ⊕ FK_{1,in} (i)

• (namely, Xi is encrypted using the keys corresponding to the
bits of i).

• For each 1 ≤ s ≤ n, the parties run a 1-out-of-2 OT:
– The sender’s input is (ks,0,ks,1).
– The receiver’s input is js.

• The sender sends Y1,…,Yn to the receiver.
• The receiver reconstructs xj.

• Why can’t we use Yi =Xi ⊕ K1,i1(i) ⊕ … ⊕ K1,in(i) ?

9

page 9March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Analysis

• Overhead:
– N=logN invocations of 1-out-of-2 OT (this is the bulk of the

overhead).
– The preprocessing stage requires NlogN invocations of

the pseudo-random function F().
• Receiver privacy (hand-waving):

– Since the 1-out-of-2 OTs do not leak information about the
receiver’s input.

• Sender privacy:
– It can be shown that if the receiver learns about more than

a single item, then either the 1-out-of-2 OT is not secure,
or F() is not pseudo-random.

10

page 10March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Applications

• Database queries

• Checking the size of a search engine index??

11

page 11March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Secure two-party computation - definition

x y

F(x,y) and nothing else

Input:
Output:

x yAs if…

F(x,y) F(x,y)

Examples…

12

page 12March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Does the trusted party scenario make sense?

x y

F(x,y) F(x,y)

• We cannot hope for more privacy
• Does the trusted party scenario make sense?

• Are the parties motivated to submit their true inputs?
• Can they tolerate the disclosure of F(x,y)?

• If so, we can implement the scenario without a trusted
party.

13

page 13March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Fairness, aka early termination

• Suppose both parties (A and B) need to learn the
output

• Assume that the last message in the protocol goes from
A to B

• A malicious A does not send that message
– ⇒ B does not learn output

• There is no perfect solution to this problem. However,
this corrupt behavior is detectable.

14

page 14March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Secure two-party computation - definition

x y

F(x,y) and nothing else

Input:
Output:

x y

As if…

F(x,y)

Real
world

Ideal
world

15

page 15March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Definition

• For every A in the real world, there is an A’ in the ideal
world, s.t. whatever A can compute in the real world. A’
can compute in the ideal world

• The same for B. Need not worry about the case the
both are corrupt.

• Semi-honest case: (A’ behaves according to the
protocol.)
– It is sufficient to require that A’ is able to simulate the

interaction from the output alone.

16

page 16March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Examples of Simple Privacy Preserving Primitives

• Reasonably efficient solutions satisfying the

definition above.

• Is X > Y? Is X = Y?

• What is X ∩ Y? What is median of X ∪ Y?

• Auctions (negotiations). Many parties,

private bids. Compute the winning bidder

and the sale price, but nothing else.

• Add privacy to existing data mining algs.

17

page 17March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Secure two-party computation of general functions [Yao]

• First, represent the function F as a Boolean circuit C
• It’s always possible
• Sometimes it’s easy (additions, comparisons)
• Sometimes the result is inefficient (e.g. for indirect

addressing)

18

page 18March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Basic ideas

• A simple circuit is evaluated by
– setting values to its input gates
– For each gate, computing the value of the outgoing wire

as a function of the wires going into the gate.
• Secure computation:

– No party should learn the values of any wires, except for
the output wires of the circuit

• Yao’s protocol
– A compiler which takes a circuit and transforms it to a

circuit which hides all information but the final output.

19

page 19March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Garbling the circuit

• Bob (aka “the constructor”) constructs the circuit, and
then garbles it.

G

wi
0,wi

1 wJ
0,wJ

1

wk
0,wk

1
Wk

0 ≡ 0 on wire k
Wk

1 ≡ 1 on wire k

(Alice will learn one
string per wire, but
not which bit it
corresponds to.)

20

page 20March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Gate tables

• For every gate, every combination of input values
is used as a key for encrypting the corresponding
output

• Assume G=AND. Bob constructs a table:
– Encryption of wk

0 using keys wi
0,wJ

0

– Encryption of wk
0 using keys wi

0,wJ
1

– Encryption of wk
0 using keys wi

1,wJ
0

– Encryption of wk
1 using keys wi

1,wJ
1

– …and permutes the order of the entries

• Result: given wi
x,wJ

y, can compute wk
G(x,y)

– (encryption can be done using a prf)

21

page 21March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

The encryption scheme being used

• The encryption scheme must be secure even if many
messages are encrypted with the same key
– Therefore, a one-time pad is not a good choice.
– Motivation: a wire might be used in many gates, and the

corresponding garbled value is used as an encryption key
in each of them.

• It must hold that a random string happens to be a
correct ciphertext only with negligible probability.
– So that when Alice tries to decrypt the entries in the table,

she will only be successful for on entry.

22

page 22March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Secure computation

• Bob sends the table of gate G to Alice
• Given, e.g., wi

0,wJ
1, Alice computes wk

0, but doesn’t know the
actual values of the wires.

• Alice cannot decrypt the entries of input pairs different from
(0,1)

• For the wires of circuit output:
– Bob does not define “garbled” values

for the output wires, but rather encrypts
a 0/1 value.

G

wi
0,wi

1 wJ
0,wJ

1

wk
0,wk

1

23

page 23March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Secure computation

• Bob sends to Alice
– Tables encoding each circuit gate.
– Garbled values (w’s) of his input values.

• If Alice gets garbled values (w’s) of her input values,
she can compute the output of the circuit, and
nothing else.
– Why can’t the Bon provide Alice with the keys

corresponding to both 0 and 1 for her input wires?

24

page 24March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Alice’s input

• For every wire i of Alice’s input:
– The parties run an OT protocol
– Alice’s input is her input bit (s).
– Bob’s input is wi

0,wi
1

– Alice learns wi
s

• The OTs for all input wires can be run in parallel.
• Afterwards Alice can compute the circuit by herself.

25

page 25March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Secure computation – the big picture (simplified)

• Represent the function as a circuit C

• Bob sends to Alice 4|C| encryptions (e.g., 50|C| Bytes).

• Alice performs an OT for every input bit. (Can do, e.g.
100 OTs per sec.)

• Relatively low overhead:
– Constant number of (~1) rounds of communication.
– Public key overhead depends on the size of Alice’s input
– Communication depends on the size of the circuit
– Efficient for medium size circuits!

26

page 26March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Secure computation: security (semi-honest case)

• In the protocol:
– Bob sends tables to Alice
– The parties run OTs where Alice learns garbled values
– Alice computes the output of the circuit

• A corrupt Bob: sees the execution of the OTs. If OTs are secure
learns nothing about Alice’s input.

• A corrupt Alice:
– Since OTs are secure, learns one garbled value per inptu wire.
– In every gate, if she knows only one garbled value of every input wire,

she cannot decrypt more than a single value of output wire.
– A simulation argument appears at “A Proof of Yao's Protocol for

Secure Two-Party Computation”

27

page 27March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Example

• Comparing two N bit numbers

• What’s the overhead?

28

page 28March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Applications

• Two parties. Two large data sets.
• Max?
• Mean?
• Median?
• Intersection?

29

page 29March 12, 2006 Advanced Topics in Cryptography, Benny Pinkas

Conclusions

• If the circuit is not too large:
– Efficient secure two-party computation.
– Efficient multi-party computation with two semi-trusted

parties.
– An “open” question: >2 semi-trusted parties.

• If the circuit is large: we currently need ad-hoc
solutions.

