Advanced Topics in Cryptography

Lecture 2: oblivious transfer, twoparty secure computation

Benny Pinkas

March 12, 2006

Advanced Topics in Cryptography, Benny Pinkas

1-out-of-N OT

- A generalization of 1-out-of-2 OT:
- Sender has N inputs, $x_0,...x_N$.
- Receiver has an input $j \in \{1,2,...,N\}$.
- Output:
- Receiver learns x_i and nothing else.
- Sender learns nothing about j.
- We would like to construct 1-out-of-N OT, or reductions from 1-out-of-N OT to 1-out-of-2 OT.
- It was shown that any such reduction which provides unconditional security requires at least N-1 OTs.
- Since OT has a high computational overhead, we would like to do better than that.

March 12, 200

Advanced Topics in Cryptography, Benny Pinkas

sage 3

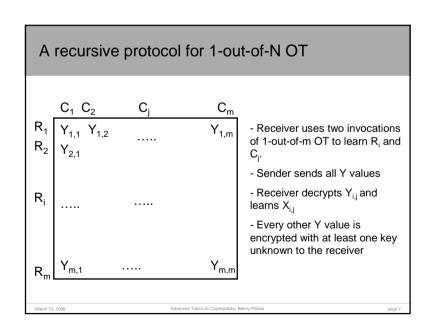
Related papers

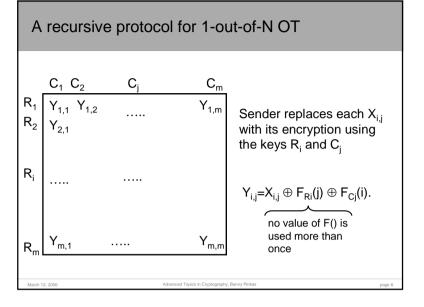
- 1-out-of-N oblivious transfer
- M. Naor and B. Pinkas Computationally Secure Oblivious Transfer Journal of Cryptology, Vol. 18, No. 1, 2005.
- · Secure Computation
- A. Yao
 How to Generate and Exchange Secrets.
 In 27th FOCS, pages 162–167, 1986.
 (the first paper on secure computation)
- D. Malkhi, N. Nisan, B. Pinkas and Y. Sella, Fairplay - A Secure Two-Party Computation System, Proceedings of Usenix Security '2004.
 (efficient implementation of two-party secure computation)
- Y. Lindell and B. Pinkas A Proof of Yao's Protocol for Secure Two-Party Computation, http://eprint.iacr.org/2004/175.
 (full proof of security)

March 12, 2001

Advanced Topics in Cryptography, Benny Pinkas

Construction 1: A recursive protocol for 1-out-of-N OT


- The reduction uses a pseudo-random function $F_k()$.
 - It holds that if k is chosen at random and kept secret, no adversary can distinguish between (x,F_k(x)) and a random value, for every x.
- The protocol reduces 1-out-of-m OT to 1-out-of-√m OT.
 This can done recursively.


March 12, 20

Advanced Topics in Cryptography, Benny Pinkas

page 4

A recursive protocol for 1-out-of-N OT Sender's original input: $X_{1,1} X_{1,2}$ X_{m,1} $X_{m,m}$ Advanced Topics in Cryptography, Benny Pinkas

Construction 2: a reduction to 1-out-of-2 OT

- Assume N=2ⁿ. The receiver's input is $j=j_n,...,j_1$.
- Preprocessing: the sender prepares 2n keys
- $-(k_{1,0},k_{1,1}),(k_{2,0},k_{2,1}),...,(k_{n,0},k_{n,1}).$
- and encryptions $Y_i = X_i \oplus F_{K_{-1,i1}}(i) \oplus \ldots \oplus F_{K_{-1,in}}(i)$ (namely, X_i is encrypted using the keys corresponding to the bits of i).
- For each $1 \le s \le n$, the parties run a 1-out-of-2 OT:
- The sender's input is $(k_{s,0}, k_{s,1})$.
- The receiver's input is j_s .
- The sender sends $Y_1, ..., Y_n$ to the receiver.
- The receiver reconstructs x_i.
- Why can't we use $Y_i = X_i \oplus K_{1,i1}(i) \oplus ... \oplus K_{1,in}(i)$?

Advanced Topics in Cryptography, Benny Pinkas

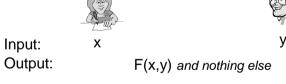
Analysis

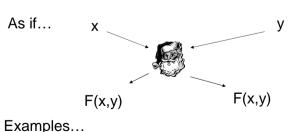
- Overhead:
- N=logN invocations of 1-out-of-2 OT (this is the bulk of the overhead).
- The preprocessing stage requires NlogN invocations of the pseudo-random function *F*(*)*.
- Receiver privacy (hand-waving):
- Since the 1-out-of-2 OTs do not leak information about the receiver's input.
- Sender privacy:
- It can be shown that if the receiver learns about more than a single item, then either the 1-out-of-2 OT is not secure, or F() is not pseudo-random.

March 12 2006

Advanced Topics in Cryptography, Benny Pinkas

page 9

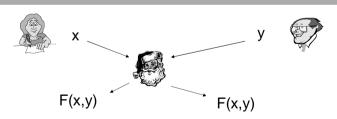

Applications


- Database queries
- Checking the size of a search engine index??

March 12, 2006

Advanced Topics in Cryptography, Benny Pinkas

Secure two-party computation - definition



March 12, 20

Advanced Topics in Cryptography, Benny Pinkas

Does the trusted party scenario make sense?

- We cannot hope for more privacy
- Does the trusted party scenario make sense?
 - Are the parties motivated to submit their true inputs?
 - ullet Can they tolerate the disclosure of F(x,y)?
- If so, we can implement the scenario without a trusted party.

March 12, 2

Advanced Topics in Cryptography, Benny Pinkas

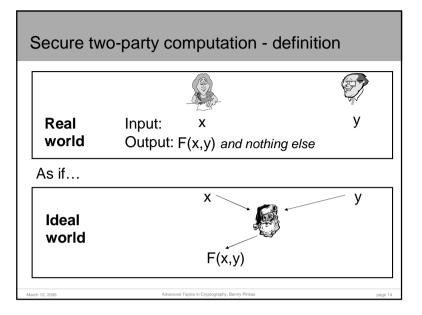
Fairness, aka early termination

- Suppose both parties (A and B) need to learn the output
- Assume that the last message in the protocol goes from A to B
- A malicious A does not send that message
- \Rightarrow B does not learn output
- There is no perfect solution to this problem. However, this corrupt behavior is detectable.

March 12, 2006

Advanced Topics in Cryptography, Benny Pinkas

---- 40


Definition

- For every A in the real world, there is an A' in the ideal world, s.t. whatever A can compute in the real world. A' can compute in the ideal world
- The same for B. Need not worry about the case the both are corrupt.
- <u>Semi-honest case:</u> (A' behaves according to the protocol.)
- It is sufficient to require that A' is able to simulate the interaction from the output alone.

March 12, 20

Advanced Topics in Cryptography, Benny Pinkas

page 15

Examples of Simple Privacy Preserving Primitives

- Reasonably efficient solutions satisfying the definition above.
 - Is X > Y? Is X = Y?
 - What is $X \cap Y$? What is median of $X \cup Y$?
 - Auctions (negotiations). Many parties, private bids. Compute the winning bidder and the sale price, but nothing else.
 - Add privacy to existing data mining algs.

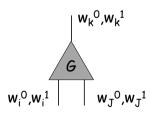
March 12, 200

Advanced Topics in Cryptography, Benny Pinkas

__

Secure two-party computation of general functions [Yao]

- First, represent the function F as a Boolean circuit C
- It's always possible
- Sometimes it's easy (additions, comparisons)
- Sometimes the result is inefficient (e.g. for indirect addressing)


March 12 2006

Advanced Topics in Cryptography, Benny Pinkas

nage 17

Garbling the circuit

• Bob (aka "the constructor") constructs the circuit, and then garbles it.

 $W_k^0 \equiv 0$ on wire k $W_k^1 \equiv 1$ on wire k

(Alice will learn one string per wire, but not which bit it corresponds to.)

March 12, 200

Advanced Topics in Cryptography, Benny Pinkas

page 19

Basic ideas

- · A simple circuit is evaluated by
 - setting values to its input gates
- For each gate, computing the value of the outgoing wire as a function of the wires going into the gate.
- Secure computation:
- No party should learn the values of any wires, except for the output wires of the circuit
- · Yao's protocol
- A compiler which takes a circuit and transforms it to a circuit which hides all information but the final output.

March 12, 20

Advanced Topics in Cryptography, Benny Pinkas

Gate tables

- For every gate, every combination of input values is used as a key for encrypting the corresponding output
- Assume G=AND. Bob constructs a table:
- Encryption of w_k^0 using keys w_i^0, w_J^0
- Encryption of w_k⁰ using keys w_i⁰,w_J¹
- Encryption of w_k⁰ using keys w_i¹,w_J⁰
- Encryption of w_k¹ using keys w_i¹,w_J¹
- ...and permutes the order of the entries
- Result: given w_ix,w_iy, can compute w_kG(x,y)
- (encryption can be done using a prf)

March 12, 2006

Advanced Topics in Cryptography, Benny Pinkas

ige 20

The encryption scheme being used

- The encryption scheme must be secure even if many messages are encrypted with the same key
- Therefore, a one-time pad is not a good choice.
- Motivation: a wire might be used in many gates, and the corresponding garbled value is used as an encryption key in each of them.
- It must hold that a random string happens to be a correct ciphertext only with negligible probability.
- So that when Alice tries to decrypt the entries in the table, she will only be successful for on entry.

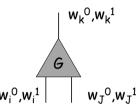
March 12 2006

Advanced Topics in Cryptography, Benny Pinkas

---- 04

Secure computation

- · Bob sends to Alice
- Tables encoding each circuit gate.
- Garbled values (w's) of his input values.
- If Alice gets garbled values (w's) of her input values, she can compute the output of the circuit, and nothing else.
- Why can't the Bon provide Alice with the keys corresponding to both 0 and 1 for her input wires?


March 12, 20

Advanced Topics in Cryptography, Benny Pinkas

page 23

Secure computation

- · Bob sends the table of gate G to Alice
- Given, e.g., w_i⁰, w_j¹, Alice computes w_k⁰, but doesn't know the
 actual values of the wires.
- Alice cannot decrypt the entries of input pairs different from (0,1)
- For the wires of circuit output:
- Bob does not define "garbled" values for the output wires, but rather encrypts a 0/1 value.

March 12, 2006

Advanced Topics in Cryptography, Benny Pinkas

---- 00

Alice's input

- For every wire i of Alice's input:
- The parties run an OT protocol
- Alice's input is her input bit (s).
- Bob's input is w_i⁰,w_i¹
- Alice learns wis
- The OTs for all input wires can be run in parallel.
- Afterwards Alice can compute the circuit by herself.

March 12, 200

Advanced Topics in Cryptography, Benny Pinkas

aye z=

Secure computation – the big picture (simplified)

- Represent the function as a circuit C
- Bob sends to Alice 4|C| encryptions (e.g., 50|C| Bytes).
- Alice performs an OT for every input bit. (Can do, e.g. 100 OTs per sec.)
- Relatively low overhead:
- Constant number of (~1) rounds of communication.
- Public key overhead depends on the size of Alice's input
- Communication depends on the size of the circuit
- Efficient for medium size circuits!

March 12 2006

Advanced Topics in Cryptography, Benny Pinkas

---- 05

Example

- Comparing two N bit numbers
- What's the overhead?

March 12, 20

Advanced Topics in Cryptography, Benny Pinkas

Secure computation: security (semi-honest case)

- In the protocol:
- Bob sends tables to Alice
- The parties run OTs where Alice learns garbled values
- Alice computes the output of the circuit
- A corrupt Bob: sees the execution of the OTs. If OTs are secure learns nothing about Alice's input.
- A corrupt Alice:
- Since OTs are secure, learns one garbled value per inptu wire.
- In every gate, if she knows only one garbled value of every input wire, she cannot decrypt more than a single value of output wire.
- A simulation argument appears at "A Proof of Yao's Protocol for Secure Two-Party Computation"

March 12, 2006

Advanced Topics in Cryptography, Benny Pinkas

nane 26

Applications

- Two parties. Two large data sets.
- Max?
- Mean?
- Median?
- Intersection?

March 12, 200

Advanced Topics in Cryptography, Benny Pinkas

page 28

Conclusions

- If the circuit is not too large:
- Efficient secure two-party computation.
- Efficient multi-party computation with two semi-trusted parties.
- An "open" question: >2 semi-trusted parties.
- If the circuit is large: we currently need ad-hoc solutions.

March 12, 2006

Advanced Topics in Cryptography, Benny Pinkas

nane 29