## Advanced Topics in Cryptography

Lecture 3: Private Information Retrieval (PIR), Keyword search

Benny Pinkas

March 26, 2006

Advanced Topics in Cryptography, Benny Pinkas

### Related papers

### PIR

- B. Chor, E. Kushilevitz, O. Goldreich, M. Sudan: Private Information Retrieval. J. ACM 45(6): 965-981 (1998)
- E. Kushilevitz, R. Ostrovsky: Replication is NOT Needed: SINGLE Database, Computationally-Private Information Retrieval. FOCS 1997: 364-373

March 26, 2006

## Private Information Retrieval (PIR)

- A special case of secure two-party computation
  - One party (aka sender, server) has a large database.
  - The other party (aka receiver, client) wants to learn a specific item in the database, while hiding its query from the database owner.
  - For example, a patent database, or web access.
- The model:
  - Sender has N bits, b<sub>1</sub>,...,b<sub>N</sub>.
  - Receiver has a query i∈ [1,N].
  - Receiver learns b<sub>i</sub> (and possibly additional information)
  - Sender learns nothing.
  - The communication is sublinear, i.e. o(N).
- (This model is not very realistic, but is convenient since it's the most basic form of PIR)

March 26, 2006

Advanced Topics in Cryptography, Benny Pinkas

### Simple protocols

- Receiver sends i to sender
  - No privacy.
- Sender sends the whole database to the receiver
  - Best privacy for the receiver.
  - Communication is O(N).
- Receiver hides its real question among other randomly chosen questions
  - Sends  $i_1,...,i_m$ , where there is a j s.t.  $i_j=i$ , and m<N.
  - Sender returns the corresponding m bits of its database.
  - There is some privacy, but the sender can find i with probability 1/m (possibly even with better probability).

March 26 2006

### How is PIR different from OT (oblivious transfer)?

- PIR
  - Sender learns nothing about the query (i.e., about i).
  - Receiver might learn more than the item it is interested in (b<sub>i</sub>).
  - Communication is sublinear in N.
  - Requires either O(N) public key operations, or multiple senders.

- 1-out-of-N Oblivious transfer
  - Sender learns nothing about the query (i.e., about i).
  - Receiver learns nothing but the result of its query (b<sub>i</sub>).
  - Communication can be linear in N.
  - Best implementation requires log(N) public key operations.

### Results

- Unconditional security
- Unconditional privacy, with a single server, requires Ω(N) communication [CGKS]
  - A communication c=(x,i) is *possible* if for a database x and user interested in i there is a positive probability for c.
  - Fix i, and assume that, considering all possible values of the database, the number of possible c is smaller than  $2^{N}$ .
  - Therefore there are (x,i) and (y,i) s.t. c is possible for both.
  - By the privacy requirement, c must be possible for every (x,j), and similarly for every (y,j).
  - There is a *j* for which  $x \neq y$ .
  - But c is possible for both (x,j) and (y,j). A contradiction!

March 26, 2006

Advanced Topics in Cryptography, Benny Pinkas

### Results

- Unconditional security
  - consider a setting where
    - k≥ 2 servers know the database
    - Servers do not collude. No single server learns about i.
    - The client can send different queries to different servers
- Results [CGKS and subsequent work]
  - 2 servers: O(N<sup>1/3</sup>) communication
  - K servers:  $O(N^{1/\Omega\{k\}})$  communication
  - log N servers: Poly(log(N)) communication.

March 26, 2006

### Two-server PIR

- Best result: N<sup>1/3</sup> communication. We will show a protocol with N<sup>1/2</sup> communication.
- There is a simple protocol with O(N) communication:
  - Receiver picks a random vector V<sub>0</sub> of length N.
  - It sets V<sub>1</sub> to be equal to V<sub>0</sub>, except for the bit in location i, whose value is reversed.
  - It sends  $V_0$  to  $P_0$ , and  $V_1$  to  $P_1$ .
  - Server<sub>0</sub> sends to R a bit c<sup>0</sup>, which is the xor of the bits  $b_i$ , for which the corresponding bit in  $V_0$  is 1, namely  $\sum V_{0,i}b_i$ .
  - Server<sub>1</sub> sends a bit c<sup>1</sup>, computed using V<sub>1</sub>.
  - The receiver computes  $b_i = c^0 \oplus c1$ .
  - Privacy: Each server sees a random vector.

March 26, 2006

Advanced Topics in Cryptography, Benny Pinkas

### Two-server PIR with $O(N^{1/2})$ communication

- Suppose N=m× m.
- Database is  $\{b_{i,j}\}_{1 \le i,j \le m}$
- Receiver is interested in  $b_{\alpha,\beta}$
- picks a random vector V<sub>0</sub> of length m.
- V<sub>1</sub> is V<sub>0</sub> with bit α reversed
- Sends V<sub>0</sub> to S<sub>0</sub> and V<sub>1</sub> to S<sub>1</sub>
- $S_0$  computes and sends the corresponding xor of every column:  $c_i^0 = \bigoplus_{i=1...m} V_{0,i} b_{i,i}$  (m results in total)
- S<sub>1</sub> computes and sends similar values c<sup>1</sup>, with V<sub>1</sub>
- The receiver ignores all values but  $c_{\beta}^{0}$ ,  $c_{\beta}^{1}$ . Computes  $b_{\alpha,\text{beta}} = c_{\beta}^{0} \oplus c_{\beta}^{1}$  (but can also compute all  $b_{\alpha,j}$ )

March 26, 2006

Advanced Topics in Cryptography, Benny Pinkas

### Four-server PIR with $O(N^{1/2})$ communication

- Here receiver can only compute  $b_{\alpha,\beta}$  (and some additional xors of inputs)
- Four servers,  $S_{0,0}, S_{0,1}, S_{1,0}, S_{1,1}$ . Each sends only O(1) bits
- Database is  $\{b_{i,j}\}_{1 \le i,j \le m}$ . Receiver is interested in  $b_{\alpha,\beta}$ .
- Receiver picks random  $V_0^R, V_0^C$  of m bits each. Computes  $V_1^R, V_1^C$  by reversing bit  $\alpha$  in  $V_0^R$ , and bit  $\beta$  in  $V_0^C$ .
- Sends vectors  $V_0^R, V_0^C$  to  $S_{0,0}$ , vectors  $V_0^R, V_1^C$  to  $S_{0,1}$ , etc.
- Each S<sub>a,b</sub> computes the xor of the bits whose coordinates correspond to "1" values in V<sup>R</sup><sub>a</sub>, V<sup>C</sup><sub>b</sub>, and returns the result.
- The receiver computes the xor of the bits it receives...

March 26, 2006

Advanced Topics in Cryptography, Benny Pinkas

### Four-server PIR with O(N<sup>1/3</sup>) communication

- We showed a four-server PIR where the receiver sends  $O(N^{1/2})$  bits and each server send O(1) bits.
- We can use this protocol as a subroutine:
  - Given a database of size N, divide it to N<sup>1/3</sup> smaller databases of size N<sup>2/3</sup> each.
  - Apply the previous protocol to all of them in parallel. The receiver constructs sets V<sup>R</sup>, V<sub>C</sub> for the database which includes the bit it is interested in, and uses these sets for all databases.
  - The receiver sends  $O((N^{2/3})^{1/2})=O(N^{1/3})$  bits.
  - Each sender returns  $N^{1/3} \cdot O(1) = O(N^{1/3})$  bits.
  - The receiver learns one value from every database.

March 26 2006

## Computational PIR [KO]

- Security is not unconditional, but rather depends on a computational assumption about the hardness of some problem
- Enables to run PIR with a single server (unlike the infeasibility result for unconditional PIR)

March 26, 2006

Advanced Topics in Cryptography, Benny Pinkas

### Computational PIR

- We will show computational PIR based on the existence of Homomorphic encryption
- Homomorphic encryption
  - Public key encryption
  - 1. Given E(x) it is possible to compute, without knowledge of the secret key,  $E(c \cdot x)$ , for every c.
  - 2. Given E(x) and E(y), it is possible to compute E(x+y)
- We actually need a weaker property
- Can be implemented based on the hardness of Quadratic Residousity, ElGamal encryption, etc.

March 26, 2006

### Computational PIR: basic scheme

- Suppose  $N = s \times t$ .
- Database is  $\{b_{i,j}\}_{1 \le i \le s, 1 \le j \le t}$
- Receiver is interested in  $b_{\alpha,\beta}$
- Receiver computes a vector V of size t:  $(E(e_1),...,E(e_t))$ , where  $e_i$ =0 if  $j \neq \beta$ , and  $e_\beta$ =1.
- Receiver sends V to sender.
- Sender computes, for every row  $1 \le i \le s$ ,  $c_i = \sum_{j=1}^t E(e_j \cdot b_{i,j}) = E(\sum_{j=1}^t e_j \cdot b_{i,j}) = b_{i,\beta} (O(N) \text{ exponen.})$
- Sender sends  $c_1, \dots, c_s$  to receiver. Receiver learns  $c_\alpha$ .
- Setting  $s=t=N^{1/2}$  results in  $O(N^{1/2})$  communication.
- Can we do better?

March 26, 2006

Advanced Topics in Cryptography, Benny Pinkas

## Computational PIR: reducing the communication via recursion

- In the final step the sender sends s values, while the receiver is interested in only one of them.
  - They can run a PIR in which the receiver learns this value!
- Set t=N<sup>1/3</sup>. Run the previous protocol without the final step.
  - $O(t)=O(N^{1/3})$  communication for this step.
  - At the end of the protocol the sender has  $N_1=N^{2/3}$  values (each of length k, which is the length of the encryption).
  - The parties run the previous protocol k times (for each bit of the answers) with  $s=t=(N_1)^{1/2}=N^{1/3}$ .
  - Communication:  $R \Rightarrow S$ :  $kN^{1/3}+k^2N^{1/3}=O(N^{1/3})$
  - $S \Rightarrow R: k^2 N^{1/3} = O(N^{1/3})$

March 26, 2006

Advanced Topics in Cryptography, Benny Pinkas

### Computational PIR: continuing the recursion

- Start from  $t = N^{1/4}$ .
- There are N<sup>3/4</sup> answers, each of length k.
- Run the previous protocol on these answers, once for every bit of the answer (a total of k times).
  - The communication overhead is  $O(k^3N^{1/3})$  bits.
- In the general case
  - The recursion has L steps
  - Start from t=N<sup>1/(L+1)</sup>
  - The total communication is  $O(N^{1/(L+1)} \cdot k^L)$
  - Setting L=O((log N / log k)<sup>1/2</sup>) results in N<sup>1/(L+1)</sup> = k<sup>L</sup>, and total communication  $2^{O(\sqrt{(\log N/\log k)})}$
- There is another PIR protocol with polylogN comm.

March 26, 2006

Advanced Topics in Cryptography, Benny Pinkas

## Sender privacy

- PIR does not prevent receiver from learning more than a single element of the database.
- PIR
  - Sender learns nothing about the query (i.e., about i).
  - Receiver might learn more than the item it is interested in (b<sub>i</sub>).
  - Communication is sublinear in N.

- 1-out-of-N Oblivious transfer
  - Sender learns nothing about the query (i.e., about i).
  - Receiver learns nothing but the result of its query (b<sub>i</sub>).
  - Communication can be linear in N.
- Is it possible to get the best in both worlds?

March 26, 2006

## Symmetrical PIR (SPIR)

- SPIR is PIR with sender privacy:
  - Sender learns nothing about the query (i.e., about i).
  - Receiver learns nothing but the result of its query.
  - Communication is sublinear in N.
- OT + PIR = SPIR
  - Recall 1-out-of-N OT:
    - 2logN keys are used to encrypt N items.
    - Receiver uses logN invocations of OT to learn logN keys.
    - All N encrypted items are sent to the receiver, who can decrypt on of them.
    - The last step can be replaced by PIR.

March 26, 2006

Advanced Topics in Cryptography, Benny Pinkas

### Keyword search

- Motivation: sometimes OT or PIR arenot enough
- Bob:
  - Has a list of N numbers of fraudulent credit cards
  - His business is advising merchants on credit card fraud
- Alice (merchant):
  - Received a credit card c, wants to check if it's in Bob's list
  - Wants to hide card details from Bob
- Can they use oblivious transfer or PIR?
  - Bob sets a table of N= $10^{16}$  ≈  $2^{53}$  entries, with 1 for each of the m corrupt credit cards, and 0 in all other entries.
  - Run an oblivious transfer with the new table...
  - ...but Bob's list is much shorter than 2<sup>53</sup>

March 26 2006

Advanced Topics in Cryptography, Benny Pinkas

## Keyword Search (KS): definition

- Input:
  - Server/Bob  $X=\{(x_i,p_i)\}$ , 1 ≤ i ≤ N.
    - $x_i$  is a keyword (e.g. number of a corrupt credit card)
    - $p_i$  is the payload (e.g. explanation why the card is corrupt)
  - Client/Alice: w (search word) (e.g. credit card number)
- Output:
  - Server: nothing
  - Client:
    - $p_i$  if  $\exists i$  s.t.  $x_i=w$
    - nothing otherwise

Server:  $(X_1,P_1)$   $(X_2,P_2)$  ...  $(X_n,P_n)$  Client:

Client output:



• Privacy: Server learns nothing about w, Client learns nothing about  $(x_i, p_i)$  for  $x_i \neq w$ 

March 26, 2006

Advanced Topics in Cryptography, Benny Pinkas

## Keyword Search: Privacy

- Client privacy:
  - (indistinguishability) ∀server program S', ∀ X,w,w', the views of S' in the protocol on server input X, for client inputs w and w', are computationally indistinguishable.



- Server privacy:
  - (comparison with ideal model) ∀ client program C', there is a client program C' in the ideal model, s.t. ∀ (X,w) the outputs of C' and C' are computationally indistinguishable.



March 26, 2006

Advanced Topics in Cryptography, Benny Pinkas

## Specific KS protocols using polynomials

- Tool: Oblivious Polynomial Evaluation (OPE) [NP]
  - Server input:  $P(x) = \sum_{i=0}^{\infty} a_i x^i$ , polynomial of degree d.
  - Client Input: w.
  - Client's output: P(w)
  - Privacy: server doesn't learn anything about w. Client learns nothing but P(w).
  - Common usage: source of (d+1)-wise independence.
- Implementation based on homomorphic encryption
  - Homomorphic encryption: Given E(x), E(y), can compute E(x+y),  $E(c\cdot x)$ , even without knowing the decryption key.
  - Client sends E(w),  $E(w^2)$ , ...,  $E(w^d)$ .
  - Sender returns  $\Sigma_{i=0...d} E(a_i w^i) = E(\Sigma_{i=0...d} a_i w^i) = E(P(w))$ .

March 26, 2006

Advanced Topics in Cryptography, Benny Pinkas

## KS using OPE (basic method)

- Server's input  $X=\{(x_i,p_i)\}$ .
- Server defines
  - Polynomial P(x) s.t.  $P(x_i)=0$  for  $x_i \in X$ . (degree = N)
  - Polynomial Q(x) s.t.  $Q(x_i) = p_i | 0^k$  for  $x_i \in X$ . (k=20?)
  - $-Z(x) = r \cdot P(x) + Q(x)$ , with a random r.
    - $Z(x) = p_i / 0^k$  for  $w \in X$
    - Z(w) is random for w∉X
- Client/server run OPE of Z(w)
  - If w∉X client learns nothing
  - If w∈X client learns p<sub>i</sub>
  - Overhead is O(N)

March 26, 2006

Advanced Topics in Cryptography, Benny Pinkas

## Reducing the Overhead using Hashing

- Server
  - defines  $L=N^{1/2}$  bins, maps L inputs to every bin (arbitrarily). (Essentially defines L different databases.)
  - Defines polynomial  $Z_j$  for bin j. (Each  $Z_j$  uses a different random coefficient r for  $Z_j(x) = r \cdot P_j(x) + Q_j(x)$ .)
- Parties do an OPE of L polynomials of degree L.
  - Compute  $Z_1(w), Z_2(w), ..., Z_L(w),$
- Overhead:
  - $O(L)=O(N^{1/2})$  communication.
  - O(N) computation at the server.
  - $O(L)=O(N^{1/2})$  computation at the client.

March 26, 2006

Advanced Topics in Cryptography, Benny Pinkas

# Reducing the overhead using PIR (slightly more theoretical...)

#### Server:

- Defines L= N / log N bins, and uses a public hash function H, chosen independently of X, to map inputs to bins.
- Whp, at most m=O(log(N)) items in every bin.
- Therefore, define polynomials of degree *m* for every bin.

#### Client:

- Does, in parallel, an OPE for all polynomials.
- Server has intermediate results  $E(Z_1(w)), \dots, E(Z_l(w))$ .
- Uses PIR to obtain answer from bin H(w), i.e.  $E(Z_{H(w)}(w))$ .

### Overhead:

- Communication: logN + overhead of PIR. A total of polylog(N) bits.
- Client computation is  $O(m)=O(\log N)$
- Server computation is O(N)

March 26, 2006

Advanced Topics in Cryptography, Benny Pinkas