
1

page 1April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas

Advanced Topics in Cryptography

Lecture 5: Homomorphic encryption

Benny Pinkas

2

page 2April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas

Related papers

• Paillier’s cryptosystem

– Pascal Paillier, Public-Key Cryptosystems Based on
Composite Degree Residuosity Classes, Eurocrypt ’99,
pp. 223-238.

– Pascal Paillier, Composite-residuosity based
cryptography: An overview, Cryptobytes, 5(1):20-26,
Winter/Spring 2002.

3

page 3April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas

Homomorphic encryption

• Public key encryption
– Given E(x) it is possible to compute, without knowledge of

the secret key, E(c⋅x), for every c.
– Given E(x) and E(y), it is possible to compute E(x+y)

• Actually, we can define it for any group operation °
– Namely, Given E(x) and E(y), it is easy to compute E(x ° y)

• Applications
– Voting
– Many cryptographic protocols, e.g. keyword search,

oblivious transfer…

4

page 4April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas

Homomorphic encryption

• “Standard” public key encryption schemes support
Homomorphic operations with relation to multiplication
– RSA

• Public key: N, e. Private key: d.

• E(m) = me mod N

• E(m1) E(m2) = E(m1⋅ m2)

– El Gamal
• Public key : p (or a similar group), y=gx. Private key: x.

• E(m) = (gr, yr m)

• E(m1) ⋅ E(m2) = E(m1⋅ m2)

5

page 5April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas

Modified El Gamal

• E(m) = (gr, yr gm)

• E(m1) ⋅ E(m2) = (gr, yr g m1 + m2) = E(m1 + m2)

• Decryption reveals g m1 + m2

• Computing m1+m2 is only possible if discrete log is
easy. For example, if m1+m2 is relatively small.

6

page 6April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas

Types of public key cryptosystems

• Mostly based on number theory assumptions.
• Can be categorized in one of three main families:
• Based on root extraction over finite Abelian groups of

secret order
– Root extraction is easy when the group order is known
– RSA, Rabin.

• Based on exponentiation over finite cyclic groups
– Depend on discrete log and Diffie-Hellman assumptions
– The trapdoor is knowledge of the discrete log of a public

group element
– El Gamal

• Based on residuocity classes
– Godwasser-Micali, Paillier.

7

page 7April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas

Paillier’s cryptosystem

• Based on composite residuocity classes
• A very useful building block for cryptographic protocols

• Mathematical background
– n = p⋅ q. p,q are large primes.
– φ = φ(n) = (p-1)(q-1)
– λ = λ(n) = lcm(p-1,q-1) Carmichael number
– We work in the group Z*n2, which has φ(n2)=nφ(n)

elements.
– For any w∈ Z*n2 ,

• w λ = 1 mod n

• w nλ = 1 mod n2

8

page 8April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas

Nth residues

• An integer z is an nth residue modulo n2 if there exists
an integer y such that z=yn mod n2.

• The set of nth residues is a multiplicative subgroup of
order φ(n).

• The number roots of degree n of 1 is n: 1, n+1, 2n+1,…
• Each nth residue has exactly n roots of degree n.

• Decisional Composite Residuocity Assumption:
– There is no polynomial time algorithm which can decide

for n=pq whether a number is an nth residue or not in Zn
2*.

– Homework:
• Show that this problem is random self reducible.
• Show that it easy to solve it given a factoring of n.

9

page 9April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas

Composite residuocity classes

• Let g∈Z*n
2 s.t. the order of g is a multiple of n. (For

example, g=n+1).
• Then the following mapping is one-to-one and onto:

– Zn × Z*n → Z*n2

– (x,y) → gxyn mod n2

• Namely, for every w∈ Z*n
2 there are unique (x,y) such

that w= gxyn mod n2.
– This x∈[1,n] is called the (unique) residuocity class of w

with respect to g, and is denoted by [w]g.
– All w values with the same x are in the same residuocity

class.
– [w]g=0 iff w is an nth residue.
– [w1 ⋅ w2]g = [w1]g + [w2]g mod n

10

page 10April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas

Computing composite residuocity classes

• Let Sn = {u | u < n2, u = 1 mod n}
– Namely, u = c⋅n +1.

• For u∈ Sn, the following function is well defined
– L(u) = (u-1)/n

• It is easy to compute discrete logs in Z*n
2 for elements

in Sn:
– For u∈ Sn, L(ur) / L(u) = r = [ur]u

• Namely, L(w) / L(u) is the discrete log of w to the base u, or
the residuocity class of w with respect to u, [w]u.

– True since (1+c⋅n)r = 1+r⋅c⋅n + …

11

page 11April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas

The Paillier cryptosystem

• Initialization:
– n=p⋅ q, g∈ Z*n2 . n divides the order of g.
– Public key: n, g.
– Private key: λ = lcm(p-1,q-1).

• Encryption:
– Plaintext: m ∈ Zn.
– Select a random r∈Z*n2 .
– Ciphertext: c = gm ⋅ rn mod n2 .

• Decryption:
– m = L(cλ mod n2) / L(gλ mod n2)

12

page 12April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas

Correctness

• Ciphertext: c = gm ⋅ rn mod n2.
• Decryption: m = L(cλ mod n2) / L(gλ mod n2)
• Explanation:

– cλ = (gm⋅ rn)λ = gmλ rnλ = gmλ mod n2

– cλ = gλ = 1 mod n
– Therefore, cλ, gλ ∈ Sn .
– L(cλ mod n2) / L(gλ mod n2) = L(c) / L(g) = [c]g = m

• Truly additive Homomorphic property:
– E(m1) ⋅ E(m2) = (gm1⋅r1

n)⋅(gm2⋅r2
n) = (gm1+m2⋅(r1r2)n) mod Z*n2

= E(m1+m2)

= 1 mod n2 = 1 mod n

13

page 13April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas

Security

• Decisional Composite Residuocity Assumption:
– There is no polynomial time algorithm which can decide

whether a number is an nth residue or not.
– Corollary: There is no polynomial time algorithm which can

decide, given w,g,x, whether x=[w]g
• Ciphertext: c = gm ⋅ rn mod Z*n

2 .
• c is an encryption of m, iff c=[g]m.
• Suppose that there is an algorithm which distinguishes

between encryptions of m1 and of m2

– Namely, the algorithm decides, given c,m1,m2,g, whether
c=[m1]g or c=[m2]g

– This algorithm solves the decisional composite residouocity
problem

14

page 14April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas

Keyword search

• Motivation: sometimes OT or PIR are not enough
• Bob:

– Has a list of N numbers of fraudulent credit cards
– His business is advising merchants on credit card fraud

• Alice (merchant):
– Received a credit card c, wants to check if it’s in Bob’s list
– Wants to hide card details from Bob

• Can they use oblivious transfer or PIR?
– Bob sets a table of N=1016 ≈ 253 entries, with 1 for each of

the m corrupt credit cards, and 0 in all other entries.
– Run an oblivious transfer with the new table…
– …but Bob’s list is much shorter than 253

15

page 15April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas

Keyword Search (KS): definition

• Input:
– Server/Bob X={ (xi,pi) }, 1 ≤ i ≤ N.

• xi is a keyword (e.g. number of a corrupt credit card)

• pi is the payload (e.g. explanation why the card is corrupt)

– Client/Alice: w (search word) (e.g. credit card number)

• Output:
– Server: nothing
– Client:

• pi if ∃ i s.t. xi=w
• nothing otherwise

• Privacy: Server learns nothing about w, Client learns nothing
about (xi,pi) for xi ≠ w

(X1,P1) … (Xn,Pn)(X2,P2)Server:

Client: w

Client output: (Xj ,Pj) if w=xj

16

page 16April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas

KS protocols using polynomials

• Tool: Oblivious Polynomial Evaluation (OPE)
– Server input: P(x) =Σi=0…d aixi, polynomial of degree d.
– Client Input: w.
– Client’s output: P(w)
– Privacy: server doesn’t learn anything about w. Client

learns nothing but P(w).
– Common usage: source of (d+1)-wise independence.

• Implementation based on homomorphic encryption
– Client sends E(w), E(w2), …, E(wd).
– Sender returns Σi=0…d E(ai w i)=E(Σi=0…d ai w i)=E(P(w)).

17

page 17April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas

KS using OPE (basic method)

• Server’s input X={(xi,pi)}.
• Server defines

– Polynomial P(x) s.t. P(xi)=0 for xi∈X. (degree = N)
– Polynomial Q(x) s.t. Q(xi)= pi |0k for xi∈X. (k=20?)

– Z(x) = r·P(x)+Q(x), with a random r.
• Z(x) = pi |0

k for w∈X

• Z(w) is random for w∉X

• Client/server run OPE of Z(w)
– If w∉X client learns nothing
– If w∈X client learns pi

– Overhead is O(N)

18

page 18April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas

Reducing the Overhead using Hashing

• Server
– defines L=N1/2 bins, maps L inputs to every bin (arbitrarily).

(Essentially defines L different databases.)
– Defines polynomial Zj for bin j. (Each Zj uses a different

random coefficient r for Zj(x) = r·Pj(x)+Qj(x).)
• Parties do an OPE of L polynomials of degree L.

– Compute Z1(w), Z2(w),…, ZL(w),
• Overhead:

– O(L)=O(N1/2) communication.
– O(N) computation at the server.
– O(L)=O(N1/2) computation at the client.

19

page 19April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas

Reducing the overhead using PIR
(slightly more theoretical…)

• Server:
– Defines L= N / log N bins, and uses a public hash function

H, chosen independently of X, to map inputs to bins.
– Whp, at most m=O(log(N)) items in every bin.
– Therefore, define polynomials of degree m for every bin.

• Client:
– Does, in parallel, an OPE for all polynomials.
– Server has intermediate results E(Z1(w)),…,E(ZL(w)).
– Uses PIR to obtain answer from bin H(w), i.e. E(ZH(w)(w)).

• Overhead:
– Communication: logN + overhead of PIR. A total of

polylog(N) bits.
– Client computation is O(m)=O(log N)
– Server computation is O(N)

