Advanced Topics in Cryptography

Lecture 5: Homomorphic encryption

Benny Pinkas

April 2, 2006

Advanced Topics in Cryptography, Benny Pinkas

Related papers

- Paillier's cryptosystem
 - Pascal Paillier, <u>Public-Key Cryptosystems Based on</u>
 <u>Composite Degree Residuosity Classes</u>, Eurocrypt '99,
 pp. 223-238.
 - Pascal Paillier, <u>Composite-residuosity based</u>
 <u>cryptography: An overview</u>, <u>Cryptobytes</u>, **5**(1):20-26,
 Winter/Spring 2002.

Homomorphic encryption

- Public key encryption
 - Given E(x) it is possible to compute, without knowledge of the secret key, E(c⋅x), for every c.
 - Given E(x) and E(y), it is possible to compute E(x+y)
- Actually, we can define it for any group operation °
 - Namely, Given E(x) and E(y), it is easy to compute E(x $^{\circ}$ y)
- Applications
 - Voting
 - Many cryptographic protocols, e.g. keyword search, oblivious transfer...

April 2, 2006

Advanced Topics in Cryptography, Benny Pinkas

Homomorphic encryption

- "Standard" public key encryption schemes support Homomorphic operations with relation to multiplication
 - RSA
 - Public key: N, e. Private key: d.
 - $E(m) = m^e \mod N$
 - $E(m_1) E(m_2) = E(m_1 \cdot m_2)$
 - El Gamal
 - Public key: p (or a similar group), y=gx. Private key: x.
 - $E(m) = (g^r, y^r m)$
 - $E(m_1) \cdot E(m_2) = E(m_1 \cdot m_2)$

April 2, 2006

Advanced Topics in Cryptography, Benny Pinkas

Modified El Gamal

- $E(m) = (g^r, y^r g^m)$
- $E(m_1) \cdot E(m_2) = (g^r, y^r g^{m_1 + m_2}) = E(m_1 + m_2)$
- Decryption reveals g m₁ + m₂
- Computing m₁+m₂ is only possible if discrete log is easy. For example, if m₁+m₂ is relatively small.

April 2, 2006

Advanced Topics in Cryptography, Benny Pinkas

Types of public key cryptosystems

- Mostly based on number theory assumptions.
- Can be categorized in one of three main families:
- Based on root extraction over finite Abelian groups of secret order
 - Root extraction is easy when the group order is known
 - RSA, Rabin.
- Based on exponentiation over finite cyclic groups
 - Depend on discrete log and Diffie-Hellman assumptions
 - The trapdoor is knowledge of the discrete log of a public group element
 - El Gamal
- Based on residuocity classes
 - Godwasser-Micali, Paillier.

Paillier's cryptosystem

- Based on composite residuocity classes
- A very useful building block for cryptographic protocols
- Mathematical background
 - $-n = p \cdot q$. p,q are large primes.
 - $-\phi = \phi(n) = (p-1)(q-1)$
 - $-\lambda = \lambda(n) = \text{lcm}(p-1,q-1)$ Carmichael number
 - We work in the group $Z_{n^2}^*$, which has $\phi(n^2)=n\phi(n)$ elements.
 - For any $w \in \mathbb{Z}_{n^2}^*$,
 - $w^{\lambda} = 1 \mod n$
 - $w^{n\lambda} = 1 \mod n^2$

April 2, 2006

Advanced Topics in Cryptography, Benny Pinkas

Nth residues

- An integer z is an n^{th} residue modulo n^2 if there exists an integer y such that $z=y^n \mod n^2$.
- The set of nth residues is a multiplicative subgroup of order φ(n).
- The number roots of degree *n* of 1 is n: 1, n+1, 2n+1,...
- Each nth residue has exactly n roots of degree n.
- Decisional Composite Residuocity Assumption:
 - There is no polynomial time algorithm which can decide for n=pq whether a number is an n^{th} residue or not in Z_n^{2*} .
 - Homework:
 - Show that this problem is random self reducible.
 - Show that it easy to solve it given a factoring of n.

April 2, 2006

Advanced Topics in Cryptography, Benny Pinkas

Composite residuocity classes

- Let $g \in \mathbb{Z}_{n^2}^*$ s.t. the order of g is a multiple of n. (For example, g=n+1).
- Then the following mapping is one-to-one and onto:
 - $-Z_n \times Z_n^* \rightarrow Z_n^{*2}$
 - $-(x,y) \rightarrow g^{x}y^{n} \mod n^{2}$
- Namely, for every $w \in Z_{n^2}^*$ there are unique (x,y) such that $w = g^x y^n \mod n^2$.
 - This x∈[1,n] is called the (unique) residuocity class of w with respect to g, and is denoted by [w]_g.
 - All w values with the same x are in the same residuocity class.
 - [w]_g=0 iff w is an nth residue.
 - $-[w_1 \cdot w_2]_g = [w_1]_g + [w_2]_g \mod n$

April 2, 2006

Advanced Topics in Cryptography, Benny Pinkas

Computing composite residuocity classes

- Let $S_n = \{u \mid u < n^2, u = 1 \mod n\}$
 - Namely, $u = c \cdot n + 1$.
- For u∈ S_n, the following function is well defined
 - L(u) = (u-1)/n
- It is easy to compute discrete logs in $Z_{n^2}^*$ for elements in S_n :
 - For $u \in S_n$, $L(u^r) / L(u) = r = [u^r]_u$
 - Namely, L(w) / L(u) is the discrete log of w to the base u, or the residuocity class of w with respect to u, [w]_u.
 - True since $(1+c\cdot n)^r = 1+r\cdot c\cdot n + \dots$

April 2, 2006

Advanced Topics in Cryptography, Benny Pinkas

The Paillier cryptosystem

- Initialization:
 - $n=p \cdot q$, $g \in \mathbb{Z}_{n^2}^*$. n divides the order of g.
 - Public key: n, g.
 - Private key: $\lambda = \text{lcm}(p-1,q-1)$.
- Encryption:
 - Plaintext: $m \in Z_n$.
 - Select a random $r \in \mathbb{Z}_{n^2}^*$.
 - Ciphertext: $c = g^m \cdot r^n \mod n^2$.
- Decryption:
 - $m = L(c^{\lambda} \mod n^2) / L(g^{\lambda} \mod n^2)$

Correctness

- Ciphertext: $c = g^m \cdot r^n \mod n^2$.
- Decryption: $m = L(c^{\lambda} \mod n^2) / L(g^{\lambda} \mod n^2)$
- Explanation:

$$-c^{\lambda} = (g^{m} \cdot r^{n})^{\lambda} = g^{m\lambda} r^{n\lambda} = g^{m\lambda} \mod n^{2}$$

$$= 1 \mod n$$

$$= 1 \mod n^{2}$$

- $-c^{\lambda}=g^{\lambda}=1 \bmod n$
- Therefore, c^{λ} , $g^{\lambda} \in S_n$.
- $L(c^{\lambda} \mod n^2) / L(g^{\lambda} \mod n^2) = L(c) / L(g) = [c]_q = m$
- Truly additive Homomorphic property:

$$- E(m_1) \cdot E(m_2) = (g^{m_1} \cdot r_1^n) \cdot (g^{m_2} \cdot r_2^n) = (g^{m_1 + m_2} \cdot (r_1 r_2)^n) \mod Z_{n^2}^*$$

$$= E(m_1 + m_2)$$

April 2, 2006

Advanced Topics in Cryptography, Benny Pinkas

Security

- Decisional Composite Residuocity Assumption:
 - There is no polynomial time algorithm which can decide whether a number is an nth residue or not.
 - Corollary: There is no polynomial time algorithm which can decide, given w,g,x, whether $x=[w]_q$
- Ciphertext: $c = g^m \cdot r^n \mod Z^*_{n^2}$.
- c is an encryption of m, iff $c=[g]_m$.
- Suppose that there is an algorithm which distinguishes between encryptions of m₁ and of m₂
 - Namely, the algorithm decides, given c,m_1,m_2,g , whether $c=[m_1]_g$ or $c=[m_2]_g$
 - This algorithm solves the decisional composite residouocity problem

Keyword search

- Motivation: sometimes OT or PIR are not enough
- Bob:
 - Has a list of N numbers of fraudulent credit cards
 - His business is advising merchants on credit card fraud
- Alice (merchant):
 - Received a credit card c, wants to check if it's in Bob's list
 - Wants to hide card details from Bob
- Can they use oblivious transfer or PIR?
 - Bob sets a table of N= 10^{16} ≈ 2^{53} entries, with 1 for each of the m corrupt credit cards, and 0 in all other entries.
 - Run an oblivious transfer with the new table...
 - ...but Bob's list is much shorter than 2⁵³

Keyword Search (KS): definition

- Input:
 - Server/Bob $X=\{(x_i,p_i)\}$, 1 ≤ i ≤ N.
 - x_i is a keyword (e.g. number of a corrupt credit card)
 - p_i is the payload (e.g. explanation why the card is corrupt)
 - Client/Alice: w (search word) (e.g. credit card number)
- Output:
 - Server: nothing
 - Client:
 - p_i if $\exists i$ s.t. $x_i=w$
 - nothing otherwise

Client output:

• Privacy: Server learns nothing about w, Client learns nothing about (x_i, p_i) for $x_i \neq w$

April 2, 2006

Advanced Topics in Cryptography, Benny Pinkas

KS protocols using polynomials

- Tool: Oblivious Polynomial Evaluation (OPE)
 - Server input: $P(x) = \sum_{i=0}^{\infty} a_i x^i$, polynomial of degree d.
 - Client Input: w.
 - Client's output: P(w)
 - Privacy: server doesn't learn anything about w. Client learns nothing but P(w).
 - Common usage: source of (d+1)-wise independence.
- Implementation based on homomorphic encryption
 - Client sends E(w), $E(w^2)$, ..., $E(w^d)$.
 - Sender returns $\Sigma_{i=0...d} E(a_i w^i) = E(\Sigma_{i=0...d} a_i w^i) = E(P(w))$.

KS using OPE (basic method)

- Server's input $X=\{(x_i,p_i)\}.$
- Server defines
 - Polynomial P(x) s.t. $P(x_i)=0$ for $x_i \in X$. (degree = N)
 - Polynomial Q(x) s.t. $Q(x_i) = p_i | 0^k$ for $x_i \in X$. (k=20?)
 - $-Z(x) = r \cdot P(x) + Q(x)$, with a random r.
 - $Z(x) = p_i / 0^k$ for $w \in X$
 - Z(w) is random for w∉X
- Client/server run OPE of Z(w)
 - If w∉X client learns nothing
 - If w∈X client learns p_i
 - Overhead is O(N)

Reducing the Overhead using Hashing

Server

- defines $L=N^{1/2}$ bins, maps L inputs to every bin (arbitrarily). (Essentially defines L different databases.)
- Defines polynomial Z_j for bin j. (Each Z_j uses a different random coefficient r for $Z_j(x) = r \cdot P_j(x) + Q_j(x)$.)
- Parties do an OPE of L polynomials of degree L.
 - Compute $Z_1(w), Z_2(w), ..., Z_L(w),$
- Overhead:
 - $O(L)=O(N^{1/2})$ communication.
 - O(N) computation at the server.
 - $O(L)=O(N^{1/2})$ computation at the client.

April 2, 2006

Advanced Topics in Cryptography, Benny Pinkas

Reducing the overhead using PIR (slightly more theoretical...)

Server:

- Defines L= N / log N bins, and uses a public hash function H, chosen independently of X, to map inputs to bins.
- Whp, at most m=O(log(N)) items in every bin.
- Therefore, define polynomials of degree *m* for every bin.

Client:

- Does, in parallel, an OPE for all polynomials.
- Server has intermediate results $E(Z_1(w)), ..., E(Z_L(w))$.
- Uses PIR to obtain answer from bin H(w), i.e. $E(Z_{H(w)}(w))$.

Overhead:

- Communication: logN + overhead of PIR. A total of polylog(N) bits.
- Client computation is $O(m)=O(\log N)$
- Server computation is O(N)

April 2, 2006

Advanced Topics in Cryptography, Benny Pinkas