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« Public key encryption

- Given E(x) it is possible to compute, without knowledge of
the secret key, E(c-x), for every c.

- Given E(x) and E(y), it is possible to compute E(x+y)
- Actually, we can define it for any group operation °
- Namely, Given E(x) and E(y), it is easy to compute E(x ° y)

» Applications
- Voting
- Many cryptographic protocols, e.g. keyword search,
oblivious transfer...
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- Paillier's cryptosystem

— Pascal Palillier, Public-Key Cryptosystems Based on
Composite Degree Residuosity Classes, Eurocrypt '99,
pp. 223-238.

— Pascal Paillier, Composite-residuosity based
cryptography: An overview, Cryptobytes, 5(1):20-26,
Winter/Spring 2002.
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- “Standard” public key encryption schemes support
Homomaorphic operations with relation to multiplication
- RSA

« Public key: N, e. Private key: d.

« E(m)=memod N
+ E(my) E(My) = E(m;- m,)
- El Gamal
« Public key : p (or a similar group), y=g*. Private key: x.
« E(m) = (9", y'm)
« E(m,) - E(M,) = E(M;- m,)
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« E(m) = (9" y'g™)
« E(my) - E(my) = (¢, y'gM*™M2) = E(M, + my)
« Decryption reveals g M1 * ™2

- Computing m,+m, is only possible if discrete log is
easy. For example, if m;+m, is relatively small.
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« Mostly based on number theory assumptions.

« Can be categorized in one of three main families:

- Based on root extraction over finite Abelian groups of
secret order
- Root extraction is easy when the group order is known
- RSA, Rabin.

- Based on exponentiation over finite cyclic groups
- Depend on discrete log and Diffie-Hellman assumptions

- The trapdoor is knowledge of the discrete log of a public
group element

- El Gamal
- Based on residuocity classes
- Godwasser-Micali, Paillier.
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- Based on composite residuocity classes
- A very useful building block for cryptographic protocols

- Mathematical background

-n=p-g. p,qare large primes.

- ¢=¢n)=(p-1)(a-1)

- A= An) =lcm(p-1,g-1) Carmichael number

- We work in the group Z* 2, which has ¢(n?)=ng¢n)
elements.

- Forany we Z* 2,
«w4=1modn
+ w"=1mod n?
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- An integer z is an n'" residue modulo n? if there exists
an integer y such that z=y" mod n2.

The set of n" residues is a multiplicative subgroup of
order ¢(n).

The number roots of degree n of 1is n: 1, n+1, 2n+1,...
Each nt" residue has exactly n roots of degree n.

Decisional Composite Residuocity Assumption:

— There is no polynomial time algorithm which can decide
for n=pq whether a number is an nt" residue or not in Z,2*.

- Homework:
« Show that this problem is random self reducible.

« Show that it easy to solve it given a factoring of n.
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« Let geZ* 2 s.t. the order of g is a multiple of n. (For
example, g=n+1).

» Then the following mapping is one-to-one and onto:
- Z, xZ*, > Z*
- (X%y) = g*y" mod n?

- Namely, for every we Z* 2 there are unique (x,y) such
that w= g*y" mod n2.
— This xe[1,n] is called the (unique) residuocity class of w

with respect to g, and is denoted by [w],.

— All w values with the same x are in the same residuocity
class.

- [w];=0 iff w is an n'" residue.
= [wy - Wylg = [wyq]g + [W,]; mod n
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«LetS,={u|u<n? u=1mod n}
- Namely, u=c-n +1.

« Forue S, the following function is well defined
- L(u) = (u-1)/n

- It is easy to compute discrete logs in Z* 2 for elements
inS,:
- Forue S, L(u") / L(u) =r = [u1,
« Namely, L(w) / L(u) is the discrete log of w to the base u, or
the residuocity class of w with respect to u, [w],,.

- True since (1+c-n)" = 1+rc-n + ...

April 2, 2006 Advanced Topics in Cryptography, Benny Pinkas page 10

« Initialization:
- N=p-q, ge Z*2. n divides the order of g.
- Public key: n, g.
- Private key: A = lcm(p-1,9-1).
« Encryption:
- Plaintext: m € Z,..
- Select a random reZ* 2.
— Ciphertext: c=g™-rm mod n2.
« Decryption:
- m = L(c* mod n2) / L(g* mod n?)
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- Ciphertext: c=g™-r" mod n2.
- Decryption: m = L(c* mod n?) / L(g* mod n?)
« Explanation:

_ Cﬂ - (gm, rn)i - gm/l rnﬂ - gm/l mod n2

[=1modn| [=1modn?|
-ct=g/=1modn
- Therefore, ¢4, g* € S, .
- L(c* mod n?) / L(g* mod n?) = L(c) / L(g) = [c]; = m

« Truly additive Homomorphic property:
- E(my) - E(my) = (gM1,") (gm24,") = (gM*M2(T1r5)") mod Z* 2
= E(m;+m,)
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Security

« Decisional Composite Residuocity Assumption:

— There is no polynomial time algorithm which can decide
whether a number is an nth residue or not.

— Corollary: There is no polynomial time algorithm which can
decide, given w,g,x, whether x=[w],
- Ciphertext: c = g™ -r" mod Z* 2.
« C is an encryption of m, iff c=[g],,,.
« Suppose that there is an algorithm which distinguishes
between encryptions of m, and of m,
- Namely, the algorithm decides, given ¢,m,;,m,,g, whether
C:[ml]g or C:[mZ]g
— This algorithm solves the decisional composite residouocity
problem

Keyword search

- Motivation: sometimes OT or PIR are not enough
- Bob:
- Has a list of N numbers of fraudulent credit cards
— His business is advising merchants on credit card fraud
« Alice (merchant):
- Received a credit card ¢, wants to check if it's in Bob’s list
- Wants to hide card details from Bob

- Can they use oblivious transfer or PIR?

- Bob sets a table of N=10%6 = 253 entries, with 1 for each of
the m corrupt credit cards, and 0 in all other entries.

— Run an oblivious transfer with the new table...
— ...but Bob's list is much shorter than 233

Keyword Search (KS): definition

« Input:
- Server/Bob X={ (x,p;) }, 1 =i <N.
- X; is a keyword (e.g. number of a corrupt credit card)

* p; is the payload (e.g. explanation why the card is corrupt)
— Client/Alice: w (search word)  (e.g. credit card number)

- Output: Server: [Py [P [ [06GPy)]
- Server: nothing —
. Client:
- Client: @
- p;if Fis.t x=w . . -
' ' Client output: P =X
« nothing otherwise P (.P;) i w=x,

« Privacy: Server learns nothing about w, Client learns nothing
about (x;,p;) for x;#w

KS protocols using polynomials

« Tool: Oblivious Polynomial Evaluation (OPE)
- Server input: P(x) =2_, 4ax|, polynomial of degree d.
— Client Input: w.
— Client’s output: P(w)
- Privacy: server doesn'’t learn anything about w. Client
learns nothing but P(w).
- Common usage: source of (d+1)-wise independence.

- Implementation based on homomaorphic encryption
- Client sends E(w), E(w?), ..., E(wd).
- Sender returns 2_, 4E(ayw)=E(Z., 4w )=E(P(w)).




« Server’s input X={(x;,p; )}
- Server defines

- Polynomial P(x) s.t. P(x;)=0 for x;eX. (degree = N)
— Polynomial Q(x) s.t. Q(x;)= p;|0% for x;eX. (k=20?)
— Z(X) = r-P(x)+Q(x), with a random r.

+ Z(x) = p; |0k for weX

+ Z(w) is random for wgX

« Client/server run OPE of Z(w)
- If wegX client learns nothing
- If weX client learns p;
- Overhead is O(N)
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- Server:

- Defines L= N/ log N bins, and uses a public hash function
H, chosen independently of X, to map inputs to bins.

- Whp, at most m=0O(log(N)) items in every bin.

- Therefore, define polynomials of degree m for every bin.
» Client:

- Does, in parallel, an OPE for all polynomials.

- Server has intermediate results E(Z,(W)),...,E(Z, (W)).

- Uses PIR to obtain answer from bin H(w), i.e. E(Zy,(W)).
» Overhead:

- Communication: logN + overhead of PIR. A total of

polylog(N) bits.
- Client computation is O(m)=0(log N)
- Server computation is O(N)
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- Server

- defines L=N¥2 bins, maps L inputs to every bin (arbitrarily).
(Essentially defines L different databases.)

- Defines polynomial Z; for bin j. (Each Z; uses a different
random coefficient r tJor Zj(x) = r-Pj(x)+(5j(x).)
« Parties do an OPE of L polynomials of degree L.
- Compute Z,(w), Z,(W),..., Z, (W),
« Overhead:
— O(L)=0O(N¥2) communication.
— O(N) computation at the server.
- O(L)=0O(N*2) computation at the client.
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