Advanced Topics in Cryptography

Lecture 6: Semantic security, chosenciphertext security.

Benny Pinkas
Based on slides of Moni Naor

April 23, 2006

Advanced Topics in Cryptography, Benny Pinkas

Related papers

- Semantic security
 - Lecture notes of Moni Naor,http://www.cs.ioc.ee/yik/schools/win2004/naor-slides-2.5.ppt
 - Lecture notes of Jonathan Katz,http://www.cs.umd.edu/~jkatz/gradcrypto2/NOTES/lecture2.pdf

April 23, 2006

Advanced Topics in Cryptography, Benny Pinkas

To specify security of encryption

- The power of the adversary
 - computational
 - Probabilistic polynomial time machine (PPTM)
 - access to the system
 - Can it change the messages?
- What constitutes a failure of the system
 - What it means to break the system.
 - Reading a message
 - Forging a message?

What is a public-key encryption scheme

 Allows Alice to publish a public key K_P while keeping hidden a secret key K_S

Key generation: a method $G:\{0,1\}^* \mapsto \{0,1\}^* \times \{0,1\}^*$ that outputs K_P (Public) and K_S (secret)

``Anyone" who is given K_P and m can encrypt m
 Encryption: a method

$$E:\{0,1\}^* \times \{0,1\}^* \times \{0,1\}^* \mapsto \{0,1\}^*$$

- that takes a public key K_P, a message (plaintext) m and random coins and outputs an encrypted message ciphertext
- Given a ciphertext and the secret key it possible to decrypt it
 Decryption: a method

$$D:\{0,1\}^* \times \{0,1\}^* \times \{0,1\}^* \mapsto \{0,1\}^*$$

that takes a secret key K_{S} , a public key K_{P} and a ciphertext c and outputs a plaintext m. In general

$$D(K_S, K_P, E(K_P, m, r)) = m$$

April 23, 2006

Advanced Topics in Cryptography, Benny Pinkas

Computational Security of Encryption Indistinguishability of Encryptions

Indistinguishability of encrypted strings:

- Adversary **A** chooses X_0 , $X_1 \in \{0,1\}^n$
- receives **encryption** of X_b for $b \in \mathbb{R}\{0,1\}$
- has to decide whether b = 0 or b = 1.

For every pptm **A**, choosing a pair X_0 , $X_1 \in \{0,1\}^n$

- | Pr[A= '1' | b = 1] Pr[A= '1' | b = 0] | is negligible.
- Probability is over the choice of keys, randomization in the encryption and A's coins.
- In other words:

the encryptions of X_0 , X_1 are indistinguishable

April 93, 2 Note that this holds for any X 195 in X 195 that An Amight choose

Computational Security of Encryption Semantic Security

- Whatever Adversary **A** can compute on encrypted string $X \in \{0,1\}^n$, so can **A**' that does **not** see the encryption of X yet simulates **A** 's knowledge with respect to X
- A selects:
 - Distribution D_n on $\{0,1\}^n$
 - Relation R(X,Y) computable in probabilistic polynomial time
- For every pptm **A** choosing a (poly time samplable) distribution D_n on $\{0,1\}^n$ there is an pptm **A**' so that for all pptm relation R, for $X \in_R D_n$ $Pr[R(X,A(E(X))] Pr[R(X,A'(\cdot))]$ is $negligible^{(*)}$
- In other words: The outputs of A and A' are indistinguishable even for a test that is aware of X

Note: the presentation of semantic security is non-standard (but equivalent to it)

(*) $\varepsilon(n)$ is negligible if for \forall polynomial p(n), $\exists N$, s.t. $\forall n > N$ $\varepsilon(n) < p(n)$

Equivalence of Semantic Security and Indistinguishability of Encryptions

- Would like to argue their equivalence
- Must define the attack
 - Otherwise cannot fully talk about an attack
- Chosen plaintext attacks
 - Adversary can obtain the encryption of any message it wishes
 - In an adaptive manner
 - Certainly feasible in a public-key setting
- More severe attacks
 - Chosen ciphertext

Security of public key cryptosystems: exact timing

- Adversary A gets to public key K_P
- Then **A** can mount an adaptive attack
 - No need for further interaction since can do all the encryption on its own
- Then A chooses
 - In semantic security the distribution D_n and the relation R
 - In indistinguishability of encryptions the pair X_0 , $X_1 \in \{0,1\}^n$
- Then **A** is given the test
 - In semantic security $E(K_P, X, r)$ for $X \in_R D_n$ and $r \in_R \{0,1\}^m$
 - In indistinguishability of encryptions the E(K_P, X_b ,r) for b \in R $\{0,1\}$ and $r\in$ R $\{0,1\}^m$

April 23, 2006

Advanced Topics in Cryptography, Benny Pinkas

When is each definition useful

- Semantic security seems to convey that the message is protected
 - Not the strongest possible definition
- Easier to prove indistinguishability of encryptions

The Equivalence Theorem

- For adaptive chosen plaintext attack in a public key setting:
 - a cryptosystem is semantically secure if and only if it has the indistinguishability of encryptions property

Equivalence Proof

If a scheme has the indistinguishability of encryptions property, then it is semantically secure:

- Suppose not, and A chooses, some distribution D_n and some relation R
- Choose X_0 , $X_1 \in_R D_n$ and run **A** twice on
 - $C_0 = E(K_P, X_0, r_0)$ call the output $Y_0 = A(E(K_P, X_0, r_0))$
 - $C_1 = E(K_P, X_1, r_1)$ call the output $Y_1 = A(E(K_P, X_1, r_1))$
- For X_0 , $X_1 \in_R D_n$ let
 - $\alpha_0 = \text{Prob}[\mathbf{R}(\mathbf{X}_0, \mathbf{Y}_0)]$
 - $\alpha_1 = \text{Prob}[\mathbf{R}(X_0, Y_1)]$

Here we Use the power to generate encryptions

- If $|\alpha_0$ - α_1 | is non negligible, then can distinguish between an encryption of X_0 and X_1
 - This contradicts the indistinguishability property, and therefore the assumption
- If $|\alpha_0 \alpha_1|$ is negligible, then can run **A'** with *no* access to encryption
 - We want to compete with R(X,A(E(X)).
 - sample $X' \in_R D_n$ and $C' = E(K_P, X', r)$
 - Run A on C' and output Y'.
 - $|\Pr(R(X,A(E(X))) \Pr(R(X,Y'))| = |\alpha_0 \alpha_1|$ and is negligible.

April 23, 2006

Advanced Topics in Cryptography, Benny Pinkas

Equivalence Proof...

If a scheme is semantically secure, then it has the indistinguishability of encryptions property:

- Suppose not, and A chooses
 - A pair X_0 , $X_1 \in \{0,1\}^n$
 - For which it can distinguish with advantage ε
- Choose
 - distribution $D_n = \{X_0, X_1\}$
 - Relation R which is "equality with X"
- For any A' that does not get C = E(K_P, X ,r) and outputs Y'
 Prob[R(X, Y')]= ½
- By simulating **A** and outputting $Y = X_b$ for guess $b \in \{0,1\}$ $Prob[\mathbf{R}(X, Y)] \ge \frac{1}{2} + \epsilon$

April 23, 2006

Advanced Topics in Cryptography, Benny Pinkas

Concatenations

- If (G,E,D) is a semantically secure cryptosystem, then an Adversary A which
 - Chooses $X_0, X_1 \in \{0,1\}^n$
 - Receives k independent encryptions of X_b for $b \in \{0,1\}$
 - has to decide whether b = 0 or b = 1.
- Cannot have a non-negligible advantage. Namely,
 | Pr(A(E(X₀),...,E(X₀))=1) Pr(A(E(X₁),...,E(X₁))=1) | is negligible.
- Proof: hybrid argument
 - Let H_j be a hybrid where A receives j encryptions of X₀ followed by k-j encryptions of random X₁
 - Suppose | $Pr(A(H_k)=1)$ $Pr(A(H_0)=1)$ | is not negligible.
 - Then $\exists j$ s.t. | $Pr(A(H_{i+1})=1)$ $Pr(A(H_i)=1)$ | is not negligible.
 - Can use it to distinguish between E(X₀) and E(X₁)

April 23, 2006

Advanced Topics in Cryptography, Benny Pinkas

From single bit to many bits

- If there is an encryption scheme that can hide E(K_P, 0 ,r) from E(K_P, 1 ,r), then we can construct a full blown (for any length messages) semantically secure cryptosystem by concatenation.
- The construction:
 - Each bit in the message m∈{0,1}^k is encrypted separately
- Proof: a hybrid argument
 - Using definition of indistinguishability of encryption
 - Suppose adversary chooses X_0 , $X_1 \in \{0,1\}^k$
 - Let:
 - D₀ be the distribution on encryptions of X₀
 - D_k be the distribution on encryptions of X₁
 - D_i be the distribution where the first i bits are from X₀ and the last k-i bits are from X₁

April 23, 2006

Advanced Topics in Cryptography, Benny Pinkas

A construction that fails

- Trapdoor one-way permutation $f_p: \{0,1\}^n \rightarrow \{0,1\}^n$
 - K_P (Public) and K_S (secret) are the keys of the trapdoor permutation.
 - Computing f_p is easy given K_p.
 - Computing f_p⁻¹ is easy given K_s. Hard otherwise.
- Why not encrypt m by sending f_p(m)?
 - f_p(m) might reveal partial information about m.
 - For example, if $f_p(m)$ is trapdoor one-way, so is g_p : $\{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$, defined as $g_p(x,y)=(x,f_p(y))$.
 - g_p(m) is not semantically secure, since it reveals half the bits of m.
- In fact, any deterministic encryption scheme cannot provide semantic security

April 23, 2006

Advanced Topics in Cryptography, Benny Pinkas

Construction: from trapdoor one-way permutation

- Key generation: K_P (Public) and K_S (secret) are the keys of a trapdoor permutation
- Encryption: to encrypt a message m∈{0,1}^k
 - select $x \in_{\mathbb{R}} \{0,1\}^n$ and $r \in_{\mathbb{R}} \{0,1\}^n$
 - Compute $g(x) = [x \cdot r, f_P(x) \cdot r, f_P^{(2)}(x) \cdot r, \dots f_P^{(k-1)}(x) \cdot r]$
 - Send m xored with g(x), and in addition $y=f_P^{(k)}(x)$ and r $(g(x) \oplus m, f_P^{(k)}(x), r)$
- Decryption: given (c, y, r)
 - extract $x = f_P^{(-k)}(y)$ using K_S
 - compute g(x) using r
 - extract m by xoring c with g(x)

Security of construction

Claim: given $y=f_{P}^{(k)}(x)$, the value of g(x) is indistinguishable from random

Proof:

- it is sufficient to show that given $y=f_P(x)$, r, for a randomly chosen r, the value of $x \cdot r$ is indistinguishable from random (this is the Goldreich-Levin hardcore predicate)
- If the adversary could have reconstructed x·r exactly, it could have revealed x (given sufficient samples)
- We can only assume that for many x's, the adversary can use y to guess x·r with probability $\frac{1}{2}+\epsilon$
- The GL proof shows a reconstruction algorithm, that given such an adversary constructs a short *list* of candidates for x. It then checks which of these values satisfies $f_p(x)=y$.

Example

- Blum-Goldwasser cryptosystem
 - Based on the Blum, Blum, Shub pseudo-random generator
 - The permutation defined by $N=P\cdot Q$, where $P,Q=3 \mod 4$
 - The trapdoor is P,Q
 - For $x \in Z_N^*$, x is a quadratic residue $f_N(x)=x^2 \mod N$

April 23, 2006

Advanced Topics in Cryptography, Benny Pinkas

One-way encryption is sufficient for semantic security against chosen plaintext attack

Call an encryption scheme **one-way** if given c=E(K_P, m, s) for random m and s it is hard to find m

- This is the weakest form of security one can expect from a ``self-respecting" cryptosystem
- Can use it to construct a single-bit indistinguishable scheme:
- To encrypt a bit b∈{0,1}:
 - choose random x, s and r
 - Send (c,r,b') where
 - $c=E(K_p, x, s)$
 - $b' = x \cdot r \oplus b$

Security: from the Goldreich-Levin reconstruction algorithm

April 23, 2006

Advanced Topics in Cryptography, Benny Pinkas