Advanced Topics in Cryptography

Lecture 6: Semantic security, chosenciphertext security.

Benny Pinkas
Based on slides of Moni Naor

April 23, 2006

Advanced Topics in Cryptography, Benny Pinkas

No class on May 28.

3 2006

Related papers

- Semantic security
- Lecture notes of Moni Naor,
 http://www.cs.ioc.ee/yik/schools/win2004/naor-slides-2.5.ppt
- Lecture notes of Jonathan Katz,
 http://www.cs.umd.edu/~jkatz/gradcrypto2/NOTES/lecture2.pdf

April 23, 200

Advanced Topics in Cryptography, Benny Pinkas

To specify security of encryption

- The power of the adversary
- computational
- Probabilistic polynomial time machine (PPTM)

Advanced Topics in Cryptography, Benny Pinkas

- access to the system
 - Can it change the messages?
- What constitutes a failure of the system
- What it means to break the system.
- Reading a message
- Forging a message?

April 23, 20

Advanced Topics in Cryptography, Benny Pinkas

age 4

What is a public-key encryption scheme

- Allows Alice to publish a public key $\mathrm{K}_{\mathrm{P}}\,$ while keeping hidden a secret key $\mathrm{K}_{\mathrm{S}}\,$
- **Key generation**: a method $G:\{0,1\}^* \mapsto \{0,1\}^* \ x \ \{0,1\}^*$ that outputs K_P (Public) and K_S (secret)
- "Anyone" who is given K_P and m can encrypt m Encryption: a method

$$E:\{0,1\}^* \times \{0,1\}^* \times \{0,1\}^* \mapsto \{0,1\}^*$$

- that takes a public key K_P, a message (plaintext) m and random coins and outputs an encrypted message ciphertext
- Given a ciphertext and the secret key it possible to decrypt it Decryption: a method

$$D:\{0,1\}^* \times \{0,1\}^* \times \{0,1\}^* \mapsto \{0,1\}^*$$

that takes a secret key $\,{\rm K_S},\,$ a public key $\,{\rm K_P}\,$ and a ciphertext c and outputs a plaintext m. In general

$$D(K_S, K_P, E(K_P, m, r)) = m$$

April 23, 2006

Topics in Cryptography, Benny Pinkas

Computational Security of Encryption Semantic Security

- Whatever Adversary **A** can compute on encrypted string $X \in \{0,1\}^n$, so can **A'** that does **not** see the encryption of X yet simulates **A'**'s knowledge with respect to X
- · A selects:
- Distribution D_n on {0,1}ⁿ
- Relation R(X,Y) computable in probabilistic polynomial time
- For every pptm \mathbf{A} choosing a (poly time samplable) distribution D_n on $\{0,1\}^n$ there is an pptm \mathbf{A} ' so that for all pptm relation R, for $X \in_R D_n$ $| Pr[R(X,\mathbf{A}(E(X))] Pr[R(X,\mathbf{A}'(\cdot))] | \text{ is } negligible^{(r)}$
- In other words: The outputs of A and A' are indistinguishable even for a test that is aware of X

Note: the presentation of semantic security is non-standard (but equivalent to it)

(*) $\varepsilon(n)$ is negligible if for \forall polynomial p(n), $\exists N$, s.t. $\forall n > N \varepsilon(n) < p(n)$

April 23, 200

Advanced Topics in Cryptography, Benny Pinkas

page 7

Computational Security of Encryption Indistinguishability of Encryptions

Indistinguishability of encrypted strings:

- Adversary **A** chooses X_0 , $X_1 \in \{0,1\}^n$
- receives **encryption** of X_b for $b \in \{0,1\}$
- has to decide whether b = 0 or b = 1.

For every pptm **A**, choosing a pair X_0 , $X_1 \in \{0,1\}^n$

- | Pr[A='1' | b=1] Pr[A='1' | b=0] | is negligible.
- Probability is over the choice of keys, randomization in the encryption and A's coins.
- In other words:

the encryptions of X_0 , X_1 are indistinguishable

Note that this holds for any X that A might choose

Equivalence of Semantic Security and Indistinguishability of Encryptions

- Would like to argue their equivalence
- Must define the attack
- Otherwise cannot fully talk about an attack
- · Chosen plaintext attacks
- Adversary can obtain the encryption of any message it wishes
- In an adaptive manner
- · Certainly feasible in a public-key setting
- · More severe attacks
- Chosen ciphertext

April 23, 20

Advanced Topics in Cryptography, Benny Pinkas

Security of public key cryptosystems: exact timing

- Adversary A gets to public key Kp
- Then A can mount an adaptive attack
- No need for further interaction since can do all the encryption on its own
- Then A chooses
- In semantic security the distribution D_n and the relation R
- In indistinguishability of encryptions the pair X_0 , $X_1 \in \{0,1\}^n$
- Then A is given the test
- In semantic security $E(K_P,\,X\,\,,\!r)$ for $X\!\in_R D_n$ and $\,r\!\in_R \{0,1\}^m$
- In indistinguishability of encryptions the $E(K_P,\,X_b^{}$,r) for $b\!\in_R \{0,1\}$ and $\ r\!\in_R \{0,1\}^m$

April 23, 2006

Advanced Topics in Cryptography, Benny Pinkas

The Equivalence Theorem

- For adaptive chosen plaintext attack in a public key setting:
 - a cryptosystem is semantically secure if and only if it has the indistinguishability of encryptions property

April 23, 200

Advanced Topics in Cryptography, Benny Pinkas

page 11

When is each definition useful

- Semantic security seems to convey that the message is protected
- Not the strongest possible definition
- Easier to prove indistinguishability of encryptions

April 23, 2006

Advanced Topics in Cryptography, Benny Pinkas

Equivalence Proof

If a scheme has the indistinguishability of encryptions property, then it is semantically secure:

- Suppose not, and A chooses, some distribution D_n and some relation R
- Choose X_0 , $X_1 \in_R D_n$ and run **A** twice on
- $C_0 = E(K_P, X_0, r_0)$ call the output $Y_0 = A(E(K_P, X_0, r_0))$
- $C_1 = E(K_P, X_1, r_1)$ call the output $Y_1 = A(E(K_P, X_1, r_1))$
- For X_0 , $X_1 \in_R D_n$ let

- $\alpha_0 = \text{Prob}[\mathbf{R}(X_0, Y_0)]$ - $\alpha_1 = \text{Prob}[\mathbf{R}(X_0, Y_1)]$ Here we Use the power to generate encryptions

- If $|\alpha_0$ - α_1 | is non negligible, then can distinguish between an encryption of X_0 and
- This contradicts the indistinguishability property, and therefore the assumption
- If $|\alpha_0 \alpha_1|$ is negligible, then can run **A'** with *no* access to encryption
- We want to compete with R(X,A(E(X)).
- sample X' ∈_R D_n and C' = E(K_P, X', r)
- Run A on C' and output Y'.
- $|\Pr(R(X,A(E(X))) \Pr(R(X,Y'))| = |\alpha_0 \alpha_1|$ and is negligible.

April 23, 2006

Advanced Topics in Cryptography, Benny Pinkas

Equivalence Proof...

If a scheme is semantically secure, then it has the indistinguishability of encryptions property:

- Suppose not, and A chooses
- A pair X_0 , $X_1 \in \{0,1\}^n$
- For which it can distinguish with advantage ϵ
- Choose
- distribution $D_n = \{X_0, X_1\}$
- Relation **R** which is "equality with X"
- For any **A**' that does not get $C = E(K_p, X, r)$ and outputs Y' $Prob[\mathbf{R}(X, Y')] = \frac{1}{2}$
- By simulating $\mbox{\bf A}$ and outputting $\mbox{\bf Y}=\mbox{\bf X}_b$ for guess $\mbox{\bf b}\!\in\!\{0,1\}$ $\mbox{\bf Prob}[\mbox{\bf R}(\mbox{\bf X},\mbox{\bf Y})]\geq 1/2 + \epsilon$

April 23, 2006

Advanced Topics in Cryptography, Benny Pinkas

---- 40

From single bit to many bits

- If there is an encryption scheme that can hide E(K_P, 0 ,r) from E(K_P, 1 ,r), then we can construct a full blown (for any length messages) semantically secure cryptosystem by concatenation.
- The construction:
- Each bit in the message m∈{0,1}^k is encrypted separately
- · Proof: a hybrid argument
- Using definition of indistinguishability of encryption
- Suppose adversary chooses X_0 , $X_1 \in \{0,1\}^k$

- Let:

- D₀ be the distribution on encryptions of X₀
- D_k be the distribution on encryptions of X₁
- D_i be the distribution where the first i bits are from X₀ and the last k-i bits are from X₁

April 23, 2006

Advanced Topics in Cryptography, Benny Pinkas

age 15

Concatenations

- If (G,E,D) is a semantically secure cryptosystem, then an Adversary A which
- Chooses $X_0, X_1 \in \{0,1\}^n$
- Receives k independent encryptions of X_b for $b \in \mathbb{R} \{0,1\}$
- has to decide whether b = 0 or b = 1.
- Cannot have a non-negligible advantage. Namely, $| \Pr(A(E(X_0),...,E(X_0))=1) \Pr(A(E(X_1),...,E(X_1))=1) | \text{ is negligible.}$
- Proof: hybrid argument
- Let H_j be a hybrid where A receives j encryptions of X₀ followed by k-j encryptions of random X₁
- Suppose | $Pr(A(H_k)=1)$ $Pr(A(H_0)=1)$ | is not negligible.
- Then $\exists j$ s.t. | Pr(A(H_{i+1})=1) Pr(A(H_i)=1) | is not negligible.
- Can use it to distinguish between $E(X_0)$ and $E(X_1)$

April 23, 200

Advanced Topics in Cryptography, Benny Pinkas

A construction that fails

- Trapdoor one-way permutation $f_p: \{0,1\}^n \to \{0,1\}^n$
- K_P (Public) and K_S (secret) are the keys of the trapdoor permutation.
- Computing f_p is easy given K_p.
- Computing f_p^{-1} is easy given K_s . Hard otherwise.
- Why not encrypt m by sending f_p(m)?
- f_p(m) might reveal partial information about m.
- For example, if $f_p(m)$ is trapdoor one-way, so is g_p : $\{0,1\}^{2n} \rightarrow \{0,1\}^{2n}$, defined as $g_p(x,y)=(x,f_p(y))$.
- $-g_p(m)$ is not semantically secure, since it reveals half the bits of m.
- In fact, any deterministic encryption scheme cannot provide semantic security

April 23, 200

Advanced Topics in Cryptography, Benny Pinkas

Construction: from trapdoor one-way permutation

- Key generation: K_P (Public) and K_S (secret) are the keys of a trapdoor permutation
- Encryption: to encrypt a message m∈{0,1}^k
- select $x \in_{\mathbb{R}} \{0,1\}^n$ and $r \in_{\mathbb{R}} \{0,1\}^n$
- Compute $g(x) = [x \cdot r, f_{P}(x) \cdot r, f_{P}(x) \cdot r, \dots f_{P}(k-1)(x) \cdot r]$
- Send m xored with g(x), and in addition $y=f_P^{(k)}(x)$ and r $(g(x)\oplus m,\,f_P^{(k)}(x),\,r)$
- Decryption: given (c, y, r)
- extract $x = f_{P}^{(-k)}(y)$ using K_{S}
- compute g(x) using r
- extract m by xoring c with g(x)

April 23, 2006

Advanced Topics in Cryptography, Benny Pinkas

---- 47

Example

- Blum-Goldwasser cryptosystem
- Based on the Blum, Blum, Shub pseudo-random generator
- The permutation defined by $N=P\cdot Q$, where $P,Q=3 \mod 4$
- The trapdoor is P,Q
- $\ For \ x \in \ Z_N^{\ *}, \ x \ is \ a \ quadratic \ residue \\ f_N(x) = x^2 \ mod \ N$

April 23, 20

Advanced Topics in Cryptography, Benny Pinkas

page 19

Security of construction

Claim: given $y=f_{p}^{(k)}(x)$, the value of g(x) is indistinguishable from random

Proof:

- it is sufficient to show that given y=f_P(x), r, for a randomly chosen r, the value of x·r is indistinguishable from random (this is the Goldreich-Levin hardcore predicate)
- If the adversary could have reconstructed x·r exactly, it could have revealed x (given sufficient samples)
- We can only assume that for many x's, the adversary can use y to guess x·r with probability $\frac{1}{2} + \epsilon$
- The GL proof shows a reconstruction algorithm, that given such an adversary constructs a short *list* of candidates for x. It then checks which of these values satisfies f_n(x)=y.

April 23, 200

Advanced Topics in Cryptography, Benny Pinkas

One-way encryption is sufficient for semantic security against chosen plaintext attack

Call an encryption scheme **one-way** if given c=E(K_P, m, s) for random m and s it is hard to find m

- This is the weakest form of security one can expect from a ``self-respecting" cryptosystem
- Can use it to construct a single-bit indistinguishable scheme:
- To encrypt a bit b∈{0,1}:
 - choose random x, s and r
 - Send (c,r,b') where
 - c=E(K_P, x, s)
 - $b' = x \cdot r \oplus b$

Security: from the Goldreich-Levin reconstruction algorithm

April 23, 200

Advanced Topics in Cryptography, Benny Pinkas