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Advanced Topics in Cryptography

Lecture 6: El Gamal. Chosen-ciphertext 
security, the Cramer-Shoup cryptosystem.

Benny Pinkas
based on slides of Moni Naor
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Related papers

– Lecture notes of Moni Naor, 
http://www.cs.ioc.ee/yik/schools/win2004/naor-slides-
2.5.ppt

– Lecture notes of Jonathan Katz, 
http://www.cs.umd.edu/~jkatz/gradcrypto2/NOTES/lecture
2.pdf
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To specify security of encryption

• The power of the adversary
– computational 

• Probabilistic polynomial time machine (PPTM)

– access to the system
• Can it change the messages?

• What constitutes a failure of the system 
– What it means to break the system.

• Reading a message

• Forging a message?
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El Gamal Encryption

• We will show that El Gamal encryption provides 
semantic security under the DDH assumption.

• Before doing that, let’s discuss the DDH assumption.
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Discrete Log Problem

• A finite cyclic group G of order n. A generator g.
• DL problem for G to the base g:

– given Y∈G find 0≤ a ≤n-1 such that Y=ga

DL Assumption for group G to the base g : 
• No efficient algorithm can solve whp the DL problem for 

Y=gx, with x∈R[0..n-1] 
• Very useful group for DL:

– ZP*. P and Q: Large primes, s.t. Q | P-1. g is an element of 
order Q  in ZP

*. Best known algorithms run in time √√√√Q or 
subexponential in log P.

• Randomized reduction
– Given a specific instance generate a random instance: 

given y generate Y’= Ygr for  r∈R [Q]
– Therefore worst case is the same as average case
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Diffie-Hellman Search Problem

For a,b∈R [Q]  

Given Y=ga and  X=gb find Z=gab . 

Assumption - no algorithm can succeed with high 
probability

No harder than DL - but not much easier.
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Decisional Diffie-Hellman Problem (DDH)

For for generator g and a,b∈ [Q]  

Given g, Y=ga, X=gb and Z decide whether Z =gab   or Z ≠
gab

Equivalent: is  logg Y = logX Z

DDH-Assumption:
• The DDH-Problem is hard in the worst case.
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Average DDH

For a,b∈R [Q]  and c which is either
– c= ab
– c∈R [Q]

Given Y=ga and  X=gb and Z =gc decide whether          
Z =gab   or Z≠ gab

DDH-Assumption average case:
• The DDH-Problem is hard for above distribution
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Worst to Average case reduction

Theorem:The average case and worst case of the DDH-
Assumption are equivalent (solving the DDH problem is 
no easier on the average case than in the worst case)

Proof:
– Given ga and gb and gc (and P, Q) 
– Sample r,s1,s2∈R [Q]
– compute 

– ga’ = (ga)r gs1

– gb’ = (gb) gs2

– gc’ = (gc)r (ga)rs2 (gb)s1 gs1s2
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…Worst to average

If c=ab +e mod Q then
– a’=ra + s1 mod Q
– b’=b + s2 mod Q
– c' = a'b'+  e r  mod Q

• Always: a’ and b' are uniformly distributed. 
• If e =0, then c' = a'b' . Otherwise c' is uniform and 

independent in [Q]
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Evidence to Validity of DDH

• Endured extensive research for DH search
– DH-search related to discrete log 

• Hard for generic algorithms 
– that work in a black-box group

• Computing the most significant bits of gab is hard
• Random-self-reducibility
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El-Gamal Cryptosystem:

• Private key a ∈R [Q] 

• Public key Y=ga and P, Q
• To encrypt M 

– choose r∈R [Q] compute X=gr and Yr

– send  <X , Yr ⋅ M>

• To decrypt <X, W>:
– compute Xa = Yr and 

– output W / Xa
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Semantic security of El Gamal encryption

• Semantic security = indistinguishability of encryptions =
indistinguishability of an encryption of M from an 
encryption of a random element

• Suppose that an adversary can
– Choose M
– Receive either an encryption of X (〈〈〈〈gr, Yr⋅M〉) or an 

encryption of a random element (〈〈〈〈gr, Yr⋅R〉), and 
distinguish between these cases.

• Then we can use the adversary to break the DDH
– We are given ga and gb and gc (where gc is either gab or 

random)
– Define the public key as Y=ga

– The adversary chooses M
– We send it (gb, gc⋅ M)
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El-Gamal Security

Under the DDH assumption the cryptosystem is 
semantically secure against chosen plaintext attacks

but...
• Scheme is malleable 

– To change M to M’=M⋅C:
change 〈〈〈〈X, W〉〉〉〉 to 〈〈〈〈X, W⋅C〉〉〉〉

• Therefore the scheme is insecure against chosen 
ciphertext attacks
– Given an encryption of M, change it to an encryption of M’

and ask to see its decryption.
– Why is this important?
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Security against chosen-ciphertext attacks

• Adversary can ask to receive decryptions of messages 
of his choice

• Adversary chooses two messages m0,m1 (possibly 
based on the answers he previously received)

• Adversary is given an encryption E(mb), where b∈R{0,1}
• Adversary can issue further  decryption queries
• Adversary guesses b

• Adversary succeeds if its probability of guessing b 
correctly is not negligibly close to ½
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The Cramer-Shoup cryptosystem

• Cramer and Shoup suggested (in 1998) an encryption 
scheme which is practical and provably secure against 
chosen ciphertext attacks

• Security is based on the DDH assumption
• The overhead is only a few exponentiations

• The basic idea:
– Add redundancy to the cryptosystem.
– A ciphertext with the right redundancy is “valid”. Otherwise 

it is invalid.
– Decryption is only performed for valid ciphertexts.
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Non-adaptive chosen ciphertext security, aka security 
against lunch-time (or preprocessing) attacks

• Adversary can ask to receive decryptions of messages 
of his choice

• Adversary chooses two messages m0,m1 (possibly 
based on the answers he previously received)

• Adversary is given an encryption E(mb), where b∈R{0,1}
• Adversary can issue further decryption queries
• Adversary guesses b

• Adversary succeeds if its probability of guessing b 
correctly is not negligibly close to ½
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Cramer-Shoup “Lite”

• A simplification of the Cramer-Shoup cryptosystem, 
which is only secure against non-adaptive chosen 
ciphertext attacks.
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Cramer-Shoup “Lite”

• Setup:
– A subgroup G of order q, with generators g1,g2

• Key generation:
– x,y,a,b ←R Zq

– h = (g1)x⋅(g2)y      c = (g1)a⋅(g2)b

– Public key = 〈 g1,g2,h,c 〉
– Private key = 〈 x,y,a,b 〉

• Encryption of m:
– r ←R Zq

– Ciphertext is 〈 g1
r, g2

r, hr⋅m, cr 〉

• Decryption of 〈 u,v,e,w 〉:
– If (w=uavb) then output e/(uxvy), otherwise no output.

Correctness?

Overhead?
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Security proof (against non-adaptive chosen 
ciphertext attacks)

• Assume that A attacks the cryptosystem. We build an 
A’ which breaks the DDH assumption.

• We are given an input to A’ and we generate a setting 
for A to work in. We want  the following to hold:
– If the input to A’ is a DDH tuple, then the setting of A is 

exactly as in the case it is attacking the cryptosystem.
– If the input to A’ is a random tuple, then the setting of A

provides it with an encryption of a random element.
– The queries that A’ makes to the decryption oracle do not 

reveal anything.
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Constructing A’

• Our input is (g1,g2,g3,g4), which is either a DDH tuple (of 
the form g,ga,gb,gab, namely logg1(g3)=logg2(g4) ), or a 
random tuple.
– x,y,a,b ←R Zq

– h = (g1)x⋅(g2)y      c = (g1)a⋅(g2)b

– Public key = 〈 g1,g2,h,c 〉
– Private key = 〈 x,y,a,b 〉
– Answer decryption queries of A, and then receive m0,m1.
– Choose s∈R{0,1}. 
– Send to A the ciphertext 〈 g3, g4, g3

xg4
y⋅ms, g3

ag4
b 〉

– If the response of A is equal to s then output “DDH tuple”, 
otherwise output “random tuple”
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Case 1: The input of A’ is a DDH tuple

• THM: If A’ receives an input which is a DDH tuple, then 
the view of A is the same as when it is interacting with a 
real cryptosystem.

• Corollary: Pr(A’ outputs “DDH” | DDH input) = Pr(A
succeeds when attacking a real cryptosystem)

• Proof:
– The public and secret keys generated by A’ are of the right 

format, and the decryption queries are answered correctly.
– If the input of A’ is a DDH tuple
– then logg1(g3)=logg2(g4)=r
– and then the ciphertext 〈 g3,g4, (g3)x(g4)y⋅ms, (g3)a(g4)b 〉 is 

of the form 〈 (g1)r,(g2)r,hr⋅ms, cr 〉, which is the right format.

page 23April 30, 2006 Advanced Topics in Cryptography, Benny Pinkas

Case 2: The input of A’ is a random tuple

• THM: If A’ receives an input which is a random tuple, 
then (except with negligible probability) A has no 
information about the bit s chosen by A’.
Namely, | Pr(A guesses s | random tuple) – ½ | is negligible.

• Corollary:
– | Pr(A’ outputs “DDH” | random tuple input) – ½ | =    | Pr(A

guesses s | random tuple) – ½ |, and is negligible
– | Pr(A’ outputs “DDH” | DDH input) – Pr(A’ outputs “DDH” | 

random tuple input) | 
= |Pr(A succeeds when attacking a real cryptosystem) - ½|
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Proof of the theorem

• We will prove the theorem for the case of a 
computationally unbounded A
– Therefore A knows γ=logg1g2

• Claim 1: With all but negligible prob, all decryption queries 
(u,v,e,w) s.t. logg1u≠ logg2v, fail.

• Proof:
– Suppose u=g1

r, v=g2
r’, r≠ r’.

– ∀z, ∃a single pair (a,b), s.t. w=uavb, namely logg1w=ar+br’⋅γ.
– Therefore, for A the value uavb is uniformly distributed, and its 

guess of w is rejected with probability 1-1/q.
– If A performs n queries, they are all rejected with prob 1-n/q.
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Proof of the theorem (contd)

• Claim 2: Assuming all “bad” decryption queries are 
rejected, A learns no information about x and y.

• Proof:
– A knows γ=logg1g2. The public key contains h=g1

xg2
y, and A 

therefore learns that logg1h=x+y⋅γ.
– Bad (rejected) queries reveal nothing about (x,y), since the 

rejection is based on the values of (a,b) alone.
– For good queries (u,v,e,w), A learns e/m=g1

rxg2
ry. Namely, 

that logg1(e/m)=xr+yr⋅γ. (Which is a relation it already knows.)
• Claims 1+ 2 → after n queries, with probability 1-n/q it 

holds that the ciphertext 〈 g3, g4, g3
xg4

y⋅ms, g3
ag4

b 〉 has (q-
n) equal probability options for (x,y), and therfore for m.

• QED


