Advanced Topics in Cryptography

Lecture 6: El Gamal. Chosen-ciphertext security, the Cramer-Shoup cryptosystem.

Benny Pinkas based on slides of Moni Naor

April 30, 2006

Advanced Topics in Cryptography, Benny Pinkas

nane 1

To specify security of encryption

- The power of the adversary
- computational
- Probabilistic polynomial time machine (PPTM)
- access to the system
- Can it change the messages?
- What constitutes a failure of the system
- What it means to break the system.
- Reading a message
- Forging a message?

April 30, 200

Advanced Topics in Cryptography, Benny Pinkas

page 3

Related papers

- Lecture notes of Moni Naor,
 http://www.cs.ioc.ee/yik/schools/win2004/naor-slides-2.5.ppt
- Lecture notes of Jonathan Katz,
 http://www.cs.umd.edu/~jkatz/gradcrypto2/NOTES/lecture
 2.pdf

April 30, 2

Advanced Topics in Cryptography, Benny Pinkas

nane

El Gamal Encryption

- We will show that El Gamal encryption provides semantic security under the DDH assumption.
- Before doing that, let's discuss the DDH assumption.

April 30, 20

Advanced Topics in Cryptography, Benny Pinkas

page 4

Discrete Log Problem

- A finite cyclic group G of order n. A generator g.
- DL problem for G to the base g:
- given Y∈G find 0≤ a ≤n-1 such that Y=ga

DL Assumption for group G to the base g:

- No *efficient* algorithm can solve whp the DL problem for $Y=g^x$, with $x \in [0..n-1]$
- Very useful group for DL:
- Z_p*. P and Q: Large primes, s.t. Q | P-1. g is an element of order Q in Z_p*. Best known algorithms run in time √Q or subexponential in log P.
- Randomized reduction
- Given a specific instance generate a random instance: given y generate $Y' = Yg^r$ for $r \in_R [Q]$
- Therefore worst case is the same as average case

A--/1 DD DDDD

ptography, Benny Pinkas

page 5

Decisional Diffie-Hellman Problem (DDH)

For for generator g and a,b∈ [Q]

Given g, Y=ga, X=gb and Z decide whether Z=gab or Z \neq q^{ab}

Equivalent: is $\log_{\alpha} Y = \log_{X} Z$

DDH-Assumption:

• The DDH-Problem is hard in the worst case.

April 30, 20

Advanced Topics in Cryptography, Benny Pinkas

page 7

Diffie-Hellman Search Problem

For a,b∈_R [Q]

Given $Y=g^a$ and $X=g^b$ find $Z=g^{ab}$.

Assumption - no algorithm can succeed with high probability

No harder than DL - but not much easier.

April 30, 200

Advanced Topics in Cryptography, Benny Pinkas

nane

Average DDH

For $a,b \in_R [Q]$ and c which is either

- c= ab
- c∈_R [Q]

Given Y= g^a and X= g^b and Z= g^c decide whether Z= g^{ab} or Z \neq g^{ab}

DDH-Assumption average case:

• The DDH-Problem is hard for above distribution

April 30, 2006

Advanced Topics in Cryptography, Benny Pinkas

page o

Worst to Average case reduction

Theorem: The average case and worst case of the DDH-Assumption are equivalent (solving the DDH problem is no easier on the average case than in the worst case)

Proof:

- Given g^a and g^b and g^c (and P, Q)
- Sample $r,s_1,s_2 \in_R [Q]$
- compute
- $g^{a'} = (g^a)^r g^{s_1}$
- $-g^{b'} = (g^b) g^{s_2}$
- $-g^{c'} = (g^c)^r (g^a)^{rs_2} (g^b)^{s_1} g^{s_1s_2}$

April 30, 2006

Advanced Topics in Cryptography, Benny Pinkas

nage 9

Evidence to Validity of DDH

- Endured extensive research for DH search
- DH-search related to discrete log
- · Hard for generic algorithms
- that work in a **black-box** group
- Computing the most significant bits of gab is hard
- · Random-self-reducibility

April 30, 201

Advanced Topics in Cryptography, Benny Pinkas

page 11

...Worst to average

If c=ab +e mod Q then

- a'=ra + s₁ mod Q
- $-b'=b+s_2 \mod Q$
- $-c' = a'b' + e r \mod Q$
- Always: a' and b' are uniformly distributed.
- If e =0, then c' = a'b' . Otherwise c' is uniform and independent in [Q]

April 30, 20

Advanced Topics in Cryptography, Benny Pinkas

El-Gamal Cryptosystem:

- Private key a ∈_R [Q]
- Public key Y=ga and P, Q
- To encrypt M
- choose $r \in_R [Q]$ compute $X=g^r$ and Y^r
- send $\langle X, Y^r \cdot M \rangle$
- To decrypt **<X**, W>:
- compute $X^a = Y^r$ and
- output W / X^a

April 30, 200

Advanced Topics in Cryptography, Benny Pinkas

Semantic security of El Gamal encryption

- Semantic security = indistinguishability of encryptions = indistinguishability of an encryption of M from an encryption of a random element
- Suppose that an adversary can
- Choose M
- Receive either an encryption of X ((gr, Y^r·M)) or an encryption of a random element ((gr, Y^r·R)), and distinguish between these cases.
- Then we can use the adversary to break the DDH
- We are given g^a and g^b and g^c (where g^c is either g^{ab} or random)
- Define the public key as Y=ga
- The adversary chooses M
- We send it (g^b, g^c· M)

April 30, 2006

Advanced Topics in Cryptography, Benny Pinkas

---- 40

Security against chosen-ciphertext attacks

- Adversary can ask to receive decryptions of messages of his choice
- Adversary chooses two messages m₀,m₁ (possibly based on the answers he previously received)
- Adversary is given an encryption E(m_b), where b∈_R{0,1}
- · Adversary can issue further decryption queries
- · Adversary guesses b
- Adversary succeeds if its probability of guessing b correctly is not negligibly close to $1\!\!/_{\!\!2}$

April 30, 20

Advanced Topics in Cryptography, Benny Pinkas

page 15

El-Gamal Security

Under the **DDH assumption** the cryptosystem is semantically secure against chosen plaintext attacks but...

- Scheme is malleable
- To change M to M'=M·C: change ⟨X, W⟩ to ⟨X, W·C⟩
- Therefore the scheme is insecure against chosen ciphertext attacks
- Given an encryption of M, change it to an encryption of M' and ask to see its decryption.
- Why is this important?

April 30, 200

Advanced Topics in Cryptography, Benny Pinkas

The Cramer-Shoup cryptosystem

- Cramer and Shoup suggested (in 1998) an encryption scheme which is practical and provably secure against chosen ciphertext attacks
- Security is based on the DDH assumption
- The overhead is only a few exponentiations
- The basic idea:
- Add redundancy to the cryptosystem.
- A ciphertext with the right redundancy is "valid". Otherwise it is invalid.
- Decryption is only performed for valid ciphertexts.

April 30, 200

Ivanced Topics in Cryptography, Benny Pinkas

age 16

Non-adaptive chosen ciphertext security, aka security against lunch-time (or preprocessing) attacks

- Adversary can ask to receive decryptions of messages of his choice
- Adversary chooses two messages m₀,m₁ (possibly based on the answers he previously received)
- Adversary is given an encryption E(m_b), where b∈_R{0,1}
- Adversary can issue further decryption queries
- · Adversary guesses b
- Adversary succeeds if its probability of guessing b correctly is not negligibly close to ½

April 30, 2006

Advanced Topics in Cryptography, Benny Pinkas

---- 47

Cramer-Shoup "Lite"

- · Setup:
- A subgroup G of order q, with generators g₁,g₂
- Key generation:
- $x,y,a,b ←_R Z_q$

 $-h = (g_1)^{x} \cdot (g_2)^{y}$ $c = (g_1)^{a} \cdot (g_2)^{b}$

Correctness?

- Public key = $\langle g_1, g_2, h, c \rangle$

Overhead?

- Private key = $\langle x,y,a,b \rangle$
- Encryption of m:
- $r \leftarrow_R Z_q$
- Ciphertext is $\langle g_1^r, g_2^r, h^r \cdot m, c^r \rangle$
- Decryption of \(u,v,e,w \):
- If (w=u^av^b) then output e/(u^xv^y), otherwise no output.

April 30, 200

Advanced Topics in Cryptography, Benny Pinkas

age 19

Cramer-Shoup "Lite"

 A simplification of the Cramer-Shoup cryptosystem, which is only secure against non-adaptive chosen ciphertext attacks.

April 30, 20

Advanced Topics in Cryptography, Benny Pinkas

Security proof (against non-adaptive chosen ciphertext attacks)

- Assume that A attacks the cryptosystem. We build an A' which breaks the DDH assumption.
- We are given an input to A' and we generate a setting for A to work in. We want the following to hold:
- If the input to A' is a DDH tuple, then the setting of A is exactly as in the case it is attacking the cryptosystem.
- If the input to A' is a random tuple, then the setting of A provides it with an encryption of a random element.
- The queries that A' makes to the decryption oracle do not reveal anything.

April 30, 20

Advanced Topics in Cryptography, Benny Pinkas

age 20

Constructing A'

- Our input is (g_1,g_2,g_3,g_4) , which is either a DDH tuple (of the form g,g^a,g^b,g^{ab} , namely $\log_{g1}(g_3)=\log_{g2}(g_4)$), or a random tuple.
- $\cdot x,y,a,b \leftarrow_R Z_a$
- $-h = (g_1)^{x} \cdot (g_2)^{y}$ $c = (g_1)^{a} \cdot (g_2)^{b}$
- Public key = $\langle g_1, g_2, h, c \rangle$
- Private key = \langle x,y,a,b \rangle
- Answer decryption queries of A, and then receive m₀,m₁.
- Choose $s ∈_R \{0,1\}$.
- Send to A the ciphertext $\langle g_3, g_4, g_3^x g_4^y \cdot m_s, g_3^a g_4^b \rangle$
- If the response of A is equal to s then output "DDH tuple", otherwise output "random tuple"

April 30, 2006

Advanced Topics in Cryptography, Benny Pinkas

---- 04

Case 2: The input of A' is a random tuple

• THM: If A' receives an input which is a random tuple, then (except with negligible probability) A has no information about the bit s chosen by A'.

Namely, | Pr(A guesses s | random tuple) – $\frac{1}{2}$ | is negligible.

- Corollary:
- | Pr(A' outputs "DDH" | random tuple input) ½ | = | Pr(A guesses s | random tuple) ½ |, and is negligible
- | Pr(A' outputs "DDH" | DDH input) Pr(A' outputs "DDH" | random tuple input) |
- = |Pr(A succeeds when attacking a real cryptosystem) ½|

April 30, 200

Advanced Topics in Cryptography, Benny Pinkas

page 23

Case 1: The input of A' is a DDH tuple

- THM: If A' receives an input which is a DDH tuple, then the view of A is the same as when it is interacting with a real cryptosystem.
- Corollary: Pr(A' outputs "DDH" | DDH input) = Pr(A succeeds when attacking a real cryptosystem)
- Proof:
- The public and secret keys generated by A' are of the right format, and the decryption queries are answered correctly.
- If the input of A' is a DDH tuple
- then $\log_{\alpha_1}(g_3) = \log_{\alpha_2}(g_4) = r$
- and then the ciphertext $\langle g_3, g_4, (g_3)^x (g_4)^y \cdot m_s, (g_3)^a (g_4)^b \rangle$ is of the form $\langle (g_1)^r, (g_2)^r, h^r \cdot m_s, c^r \rangle$, which is the right format.

April 30, 200

Advanced Topics in Cryptography, Benny Pinkas

Proof of the theorem

- We will prove the theorem for the case of a computationally unbounded A
- Therefore A knows $\gamma\text{=}\text{log}_{\text{g1}}\text{g}_2$
- Claim 1: With all but negligible prob, all decryption queries (u,v,e,w) s.t. log_{n1}u≠ log_{n2}v, fail.
- · Proof:
- Suppose $u=g_1^r$, $v=g_2^r$, $r\neq r$.
- \forall z, \exists a single pair (a,b), s.t. w=u^av^b, namely log_{q1}w=ar+br'·γ.
- Therefore, for A the value u^av^b is uniformly distributed, and its guess of w is rejected with probability 1-1/q.
- If A performs n queries, they are all rejected with prob 1-n/q.

April 30, 2

dvanced Topics in Cryptography, Benny Pinkas

age 24

Proof of the theorem (contd)

- Claim 2: Assuming all "bad" decryption queries are rejected, A learns no information about *x* and *y*.
- Proof:
- A knows $\gamma=\log_{g1}g_2$. The public key contains $h=g_1{}^xg_2{}^y$, and A therefore learns that $\log_{g1}h=x+y\cdot\gamma$.
- Bad (rejected) queries reveal nothing about (x,y), since the rejection is based on the values of (a,b) alone.
- For good queries (u,v,e,w), A learns e/m=g₁^{rx}g₂^{ry}. Namely, that log_{q1}(e/m)=xr+yr·γ. (Which is a relation it already knows.)
- Claims 1+ 2 \rightarrow after n queries, with probability 1-n/q it holds that the ciphertext $\langle g_3, g_4, g_3{}^x g_4{}^y \cdot m_s, g_3{}^a g_4{}^b \rangle$ has (q-n) equal probability options for (x,y), and therfore for m.
- QED

April 30, 2006

Advanced Topics in Cryptography, Benny Pinkas

page 25