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- The power of the adversary
- computational
« Probabilistic polynomial time machine (PPTM)
— access to the system
« Can it change the messages?
- What constitutes a failure of the system
- What it means to break the system.
» Reading a message
« Forging a message?
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— Lecture notes of Moni Naor,
http://www.cs.ioc.eelyik/schools/win2004/naor-slides-

2.5.ppt

— Lecture notes of Jonathan Katz,
http://www.cs.umd.edu/~jkatz/gradcrypto2/NOTES/lecture

2.pdf
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« We will show that EI Gamal encryption provides
semantic security under the DDH assumption.

- Before doing that, let's discuss the DDH assumption.
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« A finite cyclic group G of order n. A generator g.

» DL problem for G to the base g:
- given Y eG find 0< a <n-1 such that Y=g2

DL Assumption for group G to the base g :

« No efficient algorithm can solve whp the DL problem for
Y=0*, with xeg[0..n-1]

« Very useful group for DL:

- Zp*. P and Q: Large ﬁrimes, s.t. Q| P-1. g is an element of
order Q in Zp". Best known algorithms run in time \Q or
subexponential in log P.

- Randomized reduction
- Given a specific instance generate a random instance:
given y generate Y'=YQ" for regx[Q]
- Therefore worst case is the same as average case
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For a,begx [Q]
Given Y=g2 and X=gP find Z=gab .

Assumption - no algorithm can succeed with high
probability

No harder than DL - but not much easier.
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For for generator g and a,be [Q]

Given g, Y=0g?, X=gP and Z decide whether Z =ga® or Z #
gab

Equivalent: is logg Y =logy Z

DDH-Assumption:
« The DDH-Problem is hard in the worst case.
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For a,bez [Q] and c which is either
-c=ab

- cegr[Q]

Given Y=g2 and X=gP and Z =Q° decide whether
Z =02 orz# Qg2

DDH-Assumption average case:
« The DDH-Problem is hard for above distribution

April 30, 2006 Advanced Topics in Cryptography, Benny Pinkas




Theorem:The average case and worst case of the DDH-
Assumption are equivalent (solving the DDH problem is
no easier on the average case than in the worst case)

Proof:
- Given g2 and gP and g¢ (and P, Q)
- Sample r,s,,5,ex[Q]
- compute
- g¥ = (0997
-9 =(g") g2
- g% = (@) (@2 (g")°1 g°1°2

April 30, 2006 Advanced Topics in Cryptography, Benny Pinkas page 9

« Endured extensive research for DH search
- DH-search related to discrete log
- Hard for generic algorithms
- that work in a black-box group
- Computing the most significant bits of gaP is hard
« Random-self-reducibility
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If c=ab +e mod Q then
-a'=ra+s; modQ
-b=b+s, modQ
-c'= ab+ er modQ

« Always: a’ and b' are uniformly distributed.

- If e =0, then c' = a'b’'. Otherwise c¢'is uniform and
independent in [Q]
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- Private key a e;x[Q]

+ Public key Y=g& and P, Q

« To encrypt M
- choose reg [Q] compute X=0g" and 4
-send <X, Y - M>

« To decrypt <X, W>:

— compute X* = Y"and
— output W/ x2
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Semantic security of EI Gamal encryption

« Semantic security = indistinguishability of encryptions =
indistinguishability of an encryption of M from an
encryption of a random element

« Suppose that an adversary can
- Choose M
- Receive either an encryption of X (g, Yr-M)) or an

encryption of a random element ({(g', Yr-R)), and
distinguish between these cases.

- Then we can use the adversary to break the DDH
- We are given g2 and g° and g¢ (where g¢ is either g2 or
random)
- Define the public key as Y=g2
- The adversary chooses M
- We send it (g°, g M)

El-Gamal Security

Under the DDH assumption the cryptosystem is
semantically secure against chosen plaintext attacks
but...
« Scheme is malleable
- To change M to M'=M-C:
change (X, W) to (X, W-C)
- Therefore the scheme is insecure against chosen
ciphertext attacks

— Given an encryption of M, change it to an encryption of M’
and ask to see its decryption.

- Why is this important?

Security against chosen-ciphertext attacks

- Adversary can ask to receive decryptions of messages
of his choice

- Adversary chooses two messages m,,m, (possibly
based on the answers he previously received)

- Adversary is given an encryption E(m,), where be,{0,1}
« Adversary can issue further decryption queries
- Adversary guesses b

- Adversary succeeds if its probability of guessing b
correctly is not negligibly close to ¥2

The Cramer-Shoup cryptosystem

- Cramer and Shoup suggested (in 1998) an encryption
scheme which is practical and provably secure against
chosen ciphertext attacks

- Security is based on the DDH assumption

« The overhead is only a few exponentiations

- The basic idea:
— Add redundancy to the cryptosystem.
- A ciphertext with the right redundancy is “valid”. Otherwise
it is invalid.
— Decryption is only performed for valid ciphertexts.




- Adversary can ask to receive decryptions of messages
of his choice

- Adversary chooses two messages m,,m, (possibly
based on the answers he previously received)

- Adversary is given an encryption E(m,), where be{0,1}
. Ad : urthor d : .

- Adversary guesses b

- Adversary succeeds if its probability of guessing b
correctly is not negligibly close to Y2
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+ Setup:
- A subgroup G of order g, with generators g,,9,
- Key generation:
- Xy,a,b g Z,
-h=(9)"(92) ¢=(9)*(9)"°
- Public key ={ g;,9,,h,c) Overhead?
- Private key = (x,y,a,b)
« Encryption of m:
-r<grZ,
- Ciphertextis ( 9;, 9,", h™m, c")
« Decryption of (u,v,e,w ):
- If (w=u2vb) then output e/(uxvY), otherwise no output.

Correctness?
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- A simplification of the Cramer-Shoup cryptosystem,
which is only secure against non-adaptive chosen
ciphertext attacks.
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- Assume that A attacks the cryptosystem. We build an
A’ which breaks the DDH assumption.

- We are given an input to A’ and we generate a setting
for A to work in. We want the following to hold:

- If the input to A’ is a DDH tuple, then the setting of A is
exactly as in the case it is attacking the cryptosystem.

- If the input to A’ is a random tuple, then the setting of A
provides it with an encryption of a random element.

- The queries that A’ makes to the decryption oracle do not
reveal anything.
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Constructing A’

« Our input is (9,,9,.95.9,), which is either a DDH tuple (of

the form g,g2,g°,g%, namely log,,(9;)=log,,(9,) ), or a
random tuple.

-Xy,ab«gZ,

-h=(9)%(g) c=(99)*(9)°

- Public key = ( 9;,9,,h,c)

— Private key = (x,y,a,b )

- Answer decryption queries of A, and then receive mgy,m;.
- Choose seg{0,1}.

- Send to A the ciphertext { g3, 9, 95*0,¥-M,, 9529,° )

— If the response of A is equal to s then output “DDH tuple”,
otherwise output “random tuple”

Case 1: The input of A’ is a DDH tuple

« THM: If A’ receives an input which is a DDH tuple, then
the view of A is the same as when it is interacting with a
real cryptosystem.

« Corollary: Pr(A’ outputs “DDH” | DDH input) = Pr(A
succeeds when attacking a real cryptosystem)

« Proof:

- The public and secret keys generated by A’ are of the right
format, and the decryption queries are answered correctly.

— If the input of A’ is a DDH tuple
— then logg; (95)=10gg,(9,)=r

- and then the ciphertext ( g;,0,, (92)(9a)-Ms, (92)%(94)° ) is
of the form { (g,)",(9,)",h"mg, c" ), which is the right format.

Case 2: The input of A’ is a random tuple

« THM: If A’ receives an input which is a random tuple,
then (except with negligible probability) A has no
information about the bit s chosen by A’.

Namely, | Pr(A guesses s | random tuple) — %2 | is negligible.

« Corollary:
— | Pr(A’ outputs “DDH” | random tuple input) — % | = | Pr(A
guesses s | random tuple) — %2 |, and is negligible
— | Pr(A’ outputs “DDH” | DDH input) — Pr(A’ outputs “DDH” |
random tuple input) |
= |Pr(A succeeds when attacking a real cryptosystem) - %]

Proof of the theorem

« We will prove the theorem for the case of a
computationally unbounded A
- Therefore A knows y=log,,9,

- Claim 1: With all but negligible prob, all decryption queries
(u,v,e,w) s.t. logy, u# logy,v, fail.

« Proof:
- Suppose u=g,", v=g,", r=r’.
- Vz, Ja single pair (a,b), s.t. w=uavb, namely logg,w=ar+br'-y.
- Therefore, for A the value uavt is uniformly distributed, and its

guess of w is rejected with probability 1-1/q.

- If A performs n queries, they are all rejected with prob 1-n/q.




Proof of the theorem (contd)

« Claim 2: Assuming all “bad” decryption queries are
rejected, A learns no information about x and y.
« Proof:
- A knows y=log,,g,. The public key contains h=g,*g,¥, and A
therefore learns that logg; h=x+y-y.
- Bad (rejected) queries reveal nothing about (x,y), since the
rejection is based on the values of (a,b) alone.
- For good queries (u,v,e,w), A learns e/m=g,™g,". Namely,
that logy, (e/m)=xr+yr-y. (Which is a relation it already knows.)
« Claims 1+ 2 — after n queries, with probability 1-n/q it
holds that the ciphertext ( g, 9,, 95%9,Y-m,, 9529,° ) has (g-
n) equal probability options for (x,y), and therfore for m.

. QED




