Introduction to Cryptography: Homework 2

- 1. Let p be a prime number such that $p-1=p_1^{e_1}p_2^{e_2}...p_m^{e_m}$ ($\forall i, p_i$ is prime and $e_i \ge 1$). Prove that $g \in \mathbb{Z}_p^*$ is a generator if and only if for all $1 \le i \le m$ it holds that $g^{(p-1)/p_i} \ne 1 \mod p$. (33 points)
- 2. The purpose of this exercise is to find an efficient algorithm for computing discrete logarithms in \mathbb{Z}_p^* , where p is prime and $p=2^n+1$. The discrete logarithm problem is the following:

Input: a prime p, a generator g of Z_p^* , and a value y in Z_p^* . Output: x s.t. $g_{=y}^x \mod p$.

Let $x = b_{n-1}2^{n-1} + b_{n-2}2^{n-2} + ... + b_12^1 + b_0$ be the binary representation of x.

- a. Show how to find the least significant bit (b_0) of x (given g,y). (7 points)
- b. Set $z=y\cdot g^{-b0}$, and show how to use it to find the bit b_I . (10 points) Hint: there is an integer i such that $z=g^{4i+2\cdot bI}$. Recall also that $e=p-1=2^n$ is the smallest exponent s.t. $g^e=1 \mod p$. Use these facts to find b_I .
- c. Show how to find the complete binary representation of x. (10 points)
- d. Explain why this method is only good for a prime modulo p that satisfies $p=2^n+1$. (6 points)

Note: this algorithm can be generalized for any Z_p^* for which $p-1=p_1^{el}p_2^{e2}...p_m^{em}$, all p_i are small primes, and the factorization of p-1 is known. (There is not need to prove this fact.)

- 3. Let p be a prime number. Suppose that g is a generator of Z_p^* and let $b=g^i$ for an exponent $0 \le i \le p-2$.
 - a. Show that the order of b is (p-1)/gcd(p-1,i). (17 points)
 - b. Show that the number of generators in Z_p^* is $\phi(p-1)$. (16 points)