Topics in Cryptography: Homework 3

Submit by March 14, 2008. Solve three of the following questions.
Note: If you cannot solve an item which is part of a question, you can still solve other items in this question assuming that the first holds.

1. Let p, q be prime numbers, and $n=p q$. For a number $m \in[0,1,2, \ldots, n-1]$ we can use the representation $[a, b]$, where $a=m \bmod p$, and $b=m \bmod q$.
a. Show that for $m_{1}, m_{2}, m \in[0,1,2, \ldots, n-1]$, if the representation of m_{l} is $\left[a_{1}, b_{1}\right]$ and the representation of m_{2} is $\left[a_{2}, b_{2}\right]$, then the representation of $m=m_{1}+m_{2}$ is $[a, b]$, where $a=a_{1}+a_{2} \bmod p$, and $b=b_{1}+b_{2} \bmod q$.
b. State and prove a similar claim for multiplication.
c. For $x, y \in[0,1,2, \ldots, p-1]$, how is it possible to efficiently compute $z=x / y \bmod$ p ? I.e., compute a number $z \in[0,1,2, \ldots, p-1]$ that satisfies $y z=x \bmod p$.
d. State and prove a claim (similar to (a) and (b)) for division modulo n.
2. Let $n=p q$. Define $\lambda(n)=\operatorname{lcm}(p-1, q-1)$, i.e., $\lambda(n)$ is the least common multiplier of $p-1$ and $q-1$. (If $p=11, q=19$, then $\lambda(n)=90$.)
a. Show that if $a=1 \bmod \lambda(n)$ then for all $m \in Z_{n}{ }^{*}$ it holds that $m^{a}=m \bmod n$. (Hint: use the CRT.)
b. Show that in the RSA cryptosystem one can choose e, d to satisfy $e d=1$ $\bmod \lambda(n)$. (Instead of satisfying $e d=1 \bmod \phi(n)$.)
3. Consider the following public-key encryption scheme. The public key is (G, q, g, h) and the private key is $x=\log _{g} h$, generated exactly as in the El Gamal scheme. In order to encrypt a bit b the sender does the following:
a. If $b=0$ it chooses a random $y \in Z_{q}$ and computes $C_{1}=g^{y}$ and $C_{2}=h^{y}$. The ciphertext is (C_{1}, C_{2}).
b. If $b=1$ it chooses independent random $y, z \in Z_{q}$ and computes $C_{l}=g^{y}$ and $C_{2}=g^{z}$. The ciphertext is (C_{1}, C_{2}).

Show that it is possible to decrypt efficiently given knowledge of the private key x.

Prove that this encryption scheme is secure against chosen plaintext attacks if the Decisional Diffie-Hellman (DDH) assumption is hard in Z_{q}.

