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Administrative Details

• Grade
– Exam 70%
– Homework 30%
– Email: benny@pinkas.net

• Goal: Learn the basics of modern cryptography
• Method: introductory, applied, precise.
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Bibliography

• Textbooks:

– Introduction to Modern Cryptography, by J. Katz and Y. 
Lindell.

– Cryptography Theory and Practice, Second (or third) 
edition by D. Stinson. (Also,  מדריך למי ד ה בע ברית ש ל
! האונ יברסיט ה הפתו חה )
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Bibliography

• Optional reading:
– Handbook of Applied Cryptography, by A. Menezes, P. 

Van Oorschot, S. Vanstone. (Free!)

– Introduction to Cryptography Applied to Secure 
Communication and Commerce, by Amir Herzberg. 
(Free!)

– Applied Cryptography, by B. Schneier.
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Probability Theory

• One of the perquisites of this course is the course 
“Introduction to probability”
– If you haven’t taken that course, it is your responsibility to 

learn the relevant material.
– You can read Luca Trevisan’s notes on discrete 

probability, available at 
http://www.cs.berkeley.edu/~luca/crypto-class-
99/handouts/notesprob.ps

– Afterwards, you can also read the part on probability in 
Chapter 2 of the Handbook of Applied Cryptography, 
which is available at 
http://www.cacr.math.uwaterloo.ca/hac/about/chap2.pdf
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Course Outline

• Course Outline
– Data secrecy: encryption

• Symmetric encryption

• Asymmetric (public key) encryption

– Data Integrity: authentication, digital signatures.
– Required background in number theory
– Cryptographic protocols
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Encryption

Alice

Eve

Bob

•Two parties: Alice and Bob

•Reliable communication link

•Goal: send a message m while hiding it from Eve (as if they were both in 
the same room)

•Examples:  military communication, Internet transactions, HD encryption.
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Secret key

Alice

Eve

Bob

• Alice must have some secret information that Eve does 
not know. Otherwise…

• In symmetric encryption, Alice and Bob share a secret 
key k, which they use for encrypting and decrypting the 
message.

k k
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Authentication / Signatures

Alice Bob

•Goal:

•Enable Bob to verify that Eve did not change messages sent by Alice

•Enable Bob to prove to others the origin of messages sent by Alice

• (We’ll discuss these issues in later classes)

Eve
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Encryption

• Message space {m}   (e.g. {0,1}n)
• Key generation algorithm
• Encryption key k1, decryption key k2

• Encryption function E
• Decryption function D

• For every message m
– Dk2 ( Ek1 ( m ) ) = m
– I.e., the decryption of the encryption of m is m

• Symmetric encryption k = k1 = k2

Encryption (Ek1) Decryption (Dk2)
plaintext plaintextciphertext

Define the
encryption
system
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Security Goals

(1) No adversary can determine m
or, even better, 
(2) No adversary can determine any information about m

• Suppose m = “attack on Sunday, at 17:15”.
• The adversary can at most learn that 

– m = “attack on S**day, a* 17:**”
– m = “******   **  *u****** **  *****”

• Here, goal (1) is satisfied, but not goal (2)
• We will discuss this is more detail…
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Adversarial Model

• To be on the safe side, assume that adversary knows 
the encryption and decryption algorithms E and D, and 
the message space.

• Kerckhoff’s Principle (1883):
– The only thing Eve does not know is the secret key k
– The design of the cryptosystem is public
– This is convenient

• Only a short key must be kept secret.

• If the key is revealed, replacing it is easier than replacing the 
entire cryptosystem.

• Supports standards: the standard describes the cryptosystem 
and any vendor can write its own implementation (e.g., SSL)
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Adversarial Model

• Keeping the design public is also crucial for security
• Allows public scrutiny of the design (Linus’ law: “given enough 

eyeballs, all bugs are shallow”)
• The cryptosystem can be examined by “ethical hackers”
• Being able to reuse the same cryptosystem in different 

applications enables to spend more time on investigating its 
security

• No need to take extra measures to prevent reverse 
engineering

• Focus on securing the key

• Examples
– Security through obscurity, Intel’s HDCP, GSM A5/1.  �
– DES, AES, SSL ☺
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Adversarial Power

• What does the adversary know or seen before?

• Types of attacks:
– Ciphertext only attack – ciphertext known to the adversary 

(eavesdropping)
– Known plaintext attack – plaintext and ciphertext are known 

to the adversary
– Chosen plaintext attack – the adversary can choose the 

plaintext and obtain its encryption (e.g. he has access to the 
encryption system)

– Chosen ciphertext attack – the adversary can choose the 
ciphertext and obtain its decryption
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Adversarial Power

• What is the computational power of the adversary?
– Polynomial time?
– Unbounded computational power?

• We might assume restrictions on the adversary’s 
capabilities, but we cannot assume that it is using 
specific attacks or strategies.
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Breaking the Enigma

• German cipher in WW II

• Kerckhoff’s principle
• Known plaintext attack
• (somewhat) chosen plaintext attack
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Caesar Cipher

• A shift cipher
• Plaintext:    “ATTACK AT DAWN”
• Ciphertext: “DWWDFN DW GDZQ”
• Key: k ∈R {0,25}.    (In this example k=3)

• More formally:
– Key: k ∈R {0…25}, chosen at random. 
– Message space: English text   (i.e., {0...25} |m| )
– Algorithm: ciphertext letter = plaintext letter + k mod 26

• Follows Kerckhoff’s principle
– But not a good cipher

• A similar “cipher”:  ROT-13
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Brute Force Attacks

• Brute force attack: adversary tests all possible keys and 
checks which key decrypts the message
– Note that this assumes we can identify the correct 

plaintext among all plaintexts generated by the attack

• Caesar cipher: |key space| = 26
• We need a larger key space

• Usually, the key is a bit string chosen uniformly at 
random from {0,1}|k|.  Implying 2|k| equiprobable keys.

• How long should k be?

• The adversary should not be able to do 2|k| decryption 
trials
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Adversary’s computation power

• Theoretically
– Adversary can perform poly(|k|) computation
– Key space = 2|k|

• Practically
– |k| = 64 is too short for a key length
– |k| = 80 starts to be reasonable
– Why? (what can be done by 1000 computers in a year?)

• 255 = 220 (ops per second)
• x 220 (seconds in two weeks)
• x 25 ( ≈ fortnights  in a year) (might invest more than a year..)

• x 210 (computers in parallel)

• All this, assuming that the adversary cannot do better 
than a brute force attack
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Monoalphabetic Substitution cipher

FSTBWQZGOPHAY

MLKJIHGFEDCBA

• Plaintext:    “ATTACK AT DAWN”
• Ciphertext: “YEEYHT YE PYDL”
• More formally:

– Plaintext space = ciphertext space = {0..25} |m| 

– Key space = 1-to-1 mappings of {0..25} (i.e., permutations)
– Encryption: map each letter according to the key

• Key space = 26!  ≈ 4 x 1028  ≈ 295.   (Large enough.)
• Still easy to break

NXIDJKEUMVCRL

ZYXWVUTSRQPON
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Breaking the substitution cipher

• The plaintext has a lot of structure
– Known letter distribution in English (e.g. Pr(“e”) = 13%).
– Known distribution of pairs of letters (“th” vs. “jj”) 

– We can also use the fact that the mapping of plaintext 
letters to ciphertext letters is fixed
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Cryptanalysis of a substitution cipher

• QEFP FP QEB CFOPQ QBUQ

• QEFP FP QEB CFOPQ QBUQ

• TH      TH T T  T

• THFP FP THB CFOPT TBUT

• THIS IS TH   I ST T  T

• THIS IS THB CIOST TBUT

• THIS IS THE  I ST TE T

• THIS IS THE FIRST TEXT
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The Vigenere cipher

• Plaintext space = ciphertext space = {0..25} |m| 

• Key space = strings of |k| letters {0..25}|K|

• Generate a pad by repeating the key until it is as long as the 
plaintext  (e.g., “SECRETSECRETSEC..”)

• Encryption algorithm: add the corresponding characters 
of the pad and the plaintext

– THIS IS THE PLAINTEXT TO BE ENCRYPTED

– SECR ET SEC RETSECRET SE CR ETSECRETSE

• |Key space| = 26|k|.    (k=17 implies |key space| ≈ 280)
• Each plaintext letter is mapped to |k| different letters
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Attacking the Vigenere cipher

• Known plaintext attack (or rather, known plaintext distribution)
– Guess the key length |k|
– Examine every |k|’th letter, this is a shift cipher

• THIS   IS  HIS   IS  HIS   IS  THE  PLAHE  PLAHE  PLAINTEXT  NTEXT  NTEXT  TO BE ENO BE ENO BE ENCRYPTERYPTERYPTED

• SECR  ETECR  ETECR  ET SEC  RETEC  RETEC  RETSECRET ECRET ECRET SE  CR ETE  CR ETE  CR ETSECRETECRETECRETS

– Attack time: (|k-1| + |k|) x time of attacking a shift cipher(1)

• Chosen plaintext attack:
– Use the plaintext “aaaaaaa…”

(1) How?
– |k-1| failed tests for key lengths 1,…,|k-1|. |k| tests covering all |k| letters of 

the key.
– Attacking the shift cipher: Assume known letter frequency (no known 

plaintext). Can check the difference of resulting histogram from the English 
letters histogram.
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Perfect Cipher

• What type of security would we like to achieve?
• “Given the ciphertext, the adversary has no idea what 

the plaintext is”
– Impossible since the adversary might have a-priori 

information

• In an “ideal” world, the message will be delivered in a 
magical way, out of the reach of the adversary
– We would like to achieve similar security

• Definition: a perfect cipher
– The ciphertext does not add information about the plaintext
– Pr( plaintext = P | ciphertext = C ) = Pr( plaintext = P)
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Probability distributions

• Pr( plaintext = P | ciphertext = C )

• Probability is taken over the choices of the key, the 
plaintext, and the ciphertext.
– Key: Its probability distribution is usually uniform (all keys 

have the same probability of being chosen).
– Plaintext: has an arbitrary distribution

• Not necessarily uniform (Pr(“e”) > Pr(“j”)).

– Ciphertext: Its distribution is determined given the 
cryptosystem and the distributions of key and plaintext.

• A simplifying assumption: All plaintext and ciphertext 
values have positive probability.
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Perfect Cipher

• For a perfect cipher, it holds that given ciphertext C,
– Pr( plaintext = P | C ) = Pr( plaintext = P)
– i.e., knowledge of ciphertext does not change the a-priori 

distribution of the plaintext
– Probabilities taken over key space and plaintext space
– Does this hold for monoalphabetic substitution?
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Perfect Cipher

• Perfect secrecy is a property (which we would like 
cryptosystems to have)

• We will now show a specific cryptosystem that has this 
property

• One Time Pad (Vernam cipher): (for a one bit plaintext)
– Plaintext p ∈ {0,1}
– Key k ∈R {0,1}   (i.e. Pr(k=0) = Pr(k=1) = ½ )
– Ciphertext = p ⊕ k

– Is this a perfect cipher? What happens if we know a-priori 
that Pr(plaintext=1)=0.8 ?
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The one-time-pad is a perfect cipher

ciphertext = plaintext ⊕ k

Lemma: Pr( ciphertext = 0) = Pr( ciphertext = 1) = ½
(regardless of the distribution of the plaintext)

Pr ( ciphertext = 0)
= Pr (plaintext ⊕ key = 0)
= Pr (key = plaintext ) 
= Pr (key=0)⋅Pr(plaintext=0) + Pr (key=1)⋅Pr(plaintext=1)
= ½ ⋅ Pr(plaintext=0) + ½ ⋅Pr(plaintext=1)
= ½ ⋅ ( Pr(plaintext=0) + Pr(plaintext=1) ) = ½
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The one-time-pad is a perfect cipher

ciphertext = plaintext ⊕ k

Pr(plaintext = 1 | ciphertext = 1)
= Pr(plaintext = 1  &  ciphertext = 1) / Pr(ciphertext = 1)
= Pr(plaintext = 1  &  ciphertext = 1) / ½
= Pr(ciphertext = 1 | plaintext = 1) · Pr(plaintext = 1) / ½
= Pr(key = 0) · Pr(plaintext = 1) / ½
= ½ · Pr(plaintext = 1) / ½
= Pr(plaintext = 1)

The perfect security property holds
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One-time-pad  (OTP) - the general case

• Plaintext = p1p2…pm∈ Σm  (e.g. Σ={0,1}, or Σ={A…Z})

• key = k1k2…km ∈R Σm

• Ciphertext = c1c2…cm,   ci = pi + ki mod |Σ|

• Essentially a shift cipher with a different key for every 
character, or a Vigenere cipher with |k|=|P| 

• Shannon [47,49]: 
– An OTP is a perfect cipher, unconditionally secure. ☺
– As long as the key is a random string, of the same length 

as the plaintext. �
– Cannot use

• Shorter key   (e.g., Vigenere cipher)

• A key which is not chosen uniformly at random
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Size of key space

• Theorem: For a perfect encryption scheme, the number 
of keys is at least the size of the message space 
(number of messages that have a non-zero probability).

• Proof:
– Consider ciphertext C.
– C must be a possible encryption of any plaintext m.
– But, for this we need a different key per message m.

• Corollary: Key length of one-time pad is optimal �
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Perfect Ciphers

• A simple criteria for perfect ciphers.
• Claim: The cipher is perfect if, and only if,
∀ m1,m2∈M, ∀cipher c, 

Pr(Enc(m1)=c) = Pr(Enc(m2)=c).    (homework??)

• Idea: Regardless of the plaintext, the adversary sees 
the same distribution of ciphertexts.

• Note that the proof cannot assume that the cipher is the 
one-time-pad, but rather only that Pr( plaintext = P | 
ciphertext = C ) = Pr( plaintext = P)



34

page 34November 4, 2008 Introduction to Cryptography, Benny Pinkas

What we’ve learned today

• Introduction
• Kerckhoff’s Principle
• Some classic ciphers

– Brute force attacks
– Required key length
– A large key does no guarantee security

• Perfect ciphers


