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Integer Multiplication & Factoring as a One Way 
Function.

p,q N=pq

hard

easy

Can a public key system be based
on this observation ?????
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Excerpts from RSA paper (CACM, 1978)

The era of  “electronic mail” may soon be upon us; we must
ensure that two important properties of the current “paper 
mail” system are preserved: (a) messages are private, and (b) 
messages can be signed. We demonstrate in this paper how
to build these capabilities into an electronic mail system.

At the heart of our proposal is a new encryption method. 
This method provides an implementation of a “public-key 
cryptosystem,” an elegant concept invented by Diffie and 
Hellman. Their article motivated our research, since they 
presented the concept but not any practical implementation
of such system.  
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The Multiplicative Group Zpq*

• p and q denote two large primes (e.g. 512 bits long).
• Denote their product as N = pq.
• The multiplicative group ZN

* =Zpq
* contains all integers 

in the range [1,pq-1] that are relatively prime to both p
and q.

• The size of the group is 
– φ(n) = φ(pq) = (p-1) (q-1) = N - (p+q) + 1

• For every x ∈∈ ZN
*, xφ(N)=x(p-1)(q-1) = 1 mod N.
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Exponentiation in ZN*

• Motivation: use exponentiation for encryption. 

• Let e be an integer, 1 < e < φ(N) = (p-1)(q-1). 
– Question: When is exponentiation to the eth power, (x → xe), a one-to-

one operation in ZN* ?

• Claim: If e is relatively prime to (p-1)(q-1) (namely gcd(e, (p-1)(q-
1))=1) then x → xe is  a one-to-one operation in ZN*.

• Constructive proof:
– Since  gcd(e, (p-1)(q-1) )=1, e has a multiplicative inverse modulo (p-

1)(q-1).
– Denote it by d, then ed=1+c(p-1)(q-1)=1+cφ(N).
– Let y=xe, then yd = (xe)d = x1+cφ(N) = x.
– I.e., y → yd is the inverse of x → xe.
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The RSA Public Key Cryptosystem

• Public key:
– N=pq the product of two primes (we assume that factoring 

N is hard)
– e such that gcd(e,φ(N))=1        (are these hard to find?)

• Private key:
– d such that de≡1 mod φ(N)

• Encryption of M∈ZN*
– C=E(M)=Me mod N

• Decryption of C∈ZN*
– M=D(C)=Cd mod N    (why does it work?)
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Constructing an instance of the RSA PKC

• Alice
– picks at random two large primes, p and q.
– picks (uniformly at random) a (large) d that is relatively 

prime to (p-1)(q-1)  (namely, gcd(d,φ(N))=1 ).
– Alice computes e such that de≡1 mod φ(N)

• Let N=pq be the product of p and q.
• Alice publishes the public key (N,e).
• Alice keeps the private key d, as well as the primes p, q

and the number φ(N), in a safe place.
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Efficiency

• The public exponent e may be small.
– It is common to choose its value to be either 3 or 216+1. 

The private key d must be long. 
– Each encryption involves only a few modular 

multiplications. Decryption requires a full exponentiation.

• Usage of a small e ⇒ Encryption is more efficient than 
a full blown exponentiation. 

• Decryption requires a full exponentiation (M=Cd mod N)
• Can this be improved?
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The Chinese Remainder Theorem (CRT)

• Thm:
– Let N=pq with gcd(p,q)=1. 
– Then for every pair (y,z) ∈ Zp× Zq there exists a unique x∈Zn, s.t.

• x=y mod p

• x=z mod q

• Proof:
– The extended Euclidian algorithm finds a,b s.t. ap+bq=1.
– Define c=bq.  Therefore c=1 mod p.   c=0 mod q.  
– Define d=ap.  Therefore d=0 mod p.   d=1 mod q.
– Let x=cy+dz mod N.

• cy+dz = 1y + 0 = y   mod p.

• cy+dz =  0 + 1z = z mod q.

– (How efficient is this?)
– (The inverse operation, finding (y,z) from x, is easy.)
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More efficient RSA decryption

• CRT: 
– Given p,q compute a,b s.t. ap+bq=1.
– c=bq;  d=ap

• Decryption, given C:
– Compute y’=Cd mod p. (instead of d can use d’=d mod p-1)
– Compute z’=Cd mod q. (instead of d can use d’’=d mod q-1)
– Compute M=cy’+dz’ mod N.

• Overhead: 
– Two exponentiations modulo p,q, instead of one 

exponentiation modulo N.
– Overhead of exponentiation is cubic in length of modulus.
– I.e., save a factor of 23/2.

Once for all 
messages



11

page 11Januray 6, 2009 Introduction to Cryptography, Benny Pinkas

Security reductions

• Security by reduction
– Define what it means for the system to be “secure”

(chosen plaintext/ciphertext attacks, etc.)
– State a “hardness assumption” (e.g., that it is hard to 

extract discrete logarithms in a certain group).
– Show that if the hardness assumption holds then the 

cryptosystem is secure. 

• Benefits:
– To examine the security of the system it is sufficient to 

check whether the assumption holds
– Similarly, for setting parameters (e.g. group size).
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RSA Security

• (For ElGamal encryption, we showed that if the DDH assumption 
holds then El Gamal encryption has semantic security.)

• We know that if factoring N is easy then RSA is insecure 
– can factor N ⇒ find p,q ⇒ find (p-1)(q-1) ⇒ find d from e ⇒ decrypt RSA
– Is the converse true? (we would have liked to show that decrypting RSA 
⇒ factoring N)

• Factoring assumption: 
– For a randomly chosen p,q of good length, it is infeasible to factor N=pq.
– This assumption might be too weak (might not ensure secure RSA 

encryption)
– Maybe it is possible to break RSA without factoring N ?
– We don’t know how to reduce RSA security to the hardness of factoring. 

– Fact: finding d is equivalent to factoring.
– I.e., if it is possible to find d given (N,e) , then it is easy to factor N. 
– can find d from e  ⇒ can factor N
– But perhaps it is possible to break RSA without finding d?



13

page 13Januray 6, 2009 Introduction to Cryptography, Benny Pinkas

The RSA assumption: Trap-Door One-Way 
Function (OWF)

• (what is the minimal assumption required to show that RSA 
encryption is secure?)

• (Informal) definition: f : D→R is a trapdoor one way 
function if there is a trap-door s such that:
– Without knowledge of s, the function f is a one way. I.e., 

for a randomly chosen x, it is hard to invert f(x).
– Given s, inverting f is easy
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The RSA assumption: Trap-Door One-Way 
Function (OWF)

• Example: fg,p(x) = gx mod p is not a trapdoor one way 
function. (Therefore El Gamal encryption is not based 
on assuming the existence of a trapdoor one way 
function.)

• The RSA assumption: the RSA function is a trapdoor 
OWF
– The setting: Generate random RSA keys (N,e,d). Choose 

random y∈ Z*N. Provide the adversary with N,e,y.
– The assumption that is the there is no efficient algorithm 

which can output x such that xe=y mod N.

– The trap-door one-way function is fN,e(x) = xe mod N.    
(with N,e,x, chosen at random)

– The trapdoor is d s.t. ed = 1 mod φ(N)
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RSA as a One Way Trapdoor Permutation

x xe mod N

hard

easy

Easy with trapdoor info ( d )
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RSA assumption: cautions

• The RSA assumption is quite well established:
– RSA is a Trapdoor One-Way Permutation
– Hard to invert on random input – without secret key

• But is it a secure cryptosystem?
– Given the assumption it is hard to reconstruct the input (if 

the input was chosen randomly), but is it hard to learn 
anything about the input?

• Theorem [G]: RSA hides the log(log(n)) least and most 
significant bits of a uniformly-distributed random input
– But some (other) information about pre-image may leal
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Security of RSA

• Deterministic encryption. In textbook RSA:
– M is always encrypted as Me

– The ciphertext is as long as the domain of M
• Corollary: textbook RSA does not have semantic 

security.
– If we suspect that a ciphertext is an encryption of a 

specific message m, we can encrypt m and compare it to 
the ciphertext. If the result is equal, then m is indeed the 
message encrypted in the ciphertext. 

• It can be proved that if the message M is chosen 
uniformly at random from Z*N, then the RSA 
assumption means that no efficient algorithm can 
recover M from N,e,Me.
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Security of RSA

• Chosen ciphertext attack: (homomorphic property)
– Textbook RSA is also susceptible to chosen ciphertext 

attacks:
• We are given a ciphertext C=Me

• We can choose a random R and generate C’=CRe (an 
encryption of M·R). 

• Suppose we can receive the decryption of C’. It is equal to 
M⋅R.

• We divide it by R and reveal M.
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Padded RSA

• In order to make textbook RSA semantically secure we 
must change it to be a probabilistic  encryption

• For example, we could pad the message with random 
bits.
– Suppose that messages are of length |N|-L bits
– To encrypt a message M, choose a random string r of length 

L, and compute (r | M)e mod N.
– When decrypting, output only the last |N|-L bits of Cd mod N

• Any message has 2L possible encryptions. L must be long enough 
so that a search of all 2L pads is inefficient.

• There is no known proof that this secure.
• Similar schemes are known to be secure under certain assumptions
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Is it safe to use a common modulus ?

• Consider the following environment:
– There is a global modulus N. No one knows its factoring.
– Each party has a pair (ei,di), such that ei,di = 1 mod φ(N).

• Used as a public/private key pair.

• The system is insecure.

• Party 1, knowing (e1,d1)
– can find a multiple of φ(N),   since e1⋅d1 = c⋅φ(N)+1.
– Using it, can find di for any other party i. (I’m hiding some details 

here.)
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RSA with a small exponent

• Setting e=3 enables efficient encryption
• Might be insecure if not used properly

– Assume that the message is short, for example |M|<|N|/3
– In this case, M3 < N, and therefore M3 mod N = M3 (over 

the integers).
– For example, M=10. In this case M3 mod N = 1000.  (If 

N>1000.)
– Extracting roots over the integers is easy, and therefore it 

is easy to find M.
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RSA with a small exponent

• Another security problem with using short exponents 
(for example, e=3) 

• Assume three users with public keys N1, N2, N3.
– Alice encrypts the same (long) message to all of them

• C1 = m3 mod N1

• C2 = m3 mod N2

• C3 = m3 mod N3

• Can an adversary which sees C1,C2,C3 find m?
– m3 < N1N2N3
– N1, N2 and N3 are most likely relatively prime (otherwise 

can factor).
– Chinese remainder theorem -> can find m3 mod N (and 

therefore m3 over the integers)
– Easy to extract 3rd root over the integers.


