Introduction to Cryptography
Lecture 11

Digital signatures,
Public Key Infrastructure (PKI)

Benny Pinkas

- Associate a document with an signer (individual)

- Signature can be verified against a different signature
of the individual

- It is hard to forge the signature...
- It is hard to change the document after it was signed...
. Signatures are legally binding

Januray 13, 2009 Introduction to Cryptography, Benny Pinkas page 2

Desiderata for digital signatures

« Associate a document to an signer

A digital signature is attached to a document (rather
then be part of it)

- The signature Is easy to verify but hard to forge
— Signing is done using knowledge of a private key

— Verification is done using a public key associated with the
signer (rather than comparing to an original signature)

— It is impossible to change even one bit in the signed
document

. A copy of a digitally signed document is as good as the
original signed document.

- Digital signatures could be legally binding...

Non Repudiation

- Prevent signer from denying that it sighed the message

. |.e., the receiver can prove to third parties that the
message was signed by the signer

. This is different than message authentication (MACSs)

— There the receiver is assured that the message was sent
by the receiver and was not changed in transit

— But the receiver cannot prove this to other parties
« MACs: sender and receiver share a secret key K

- If R sees a message MACed with K, it knows that it could
have only been generated by S

 But if R shows the MAC to a third party, it cannot prove that
the MAC was generated by S and not by R

Document M

Signature
depends on M

Januray 13, 2009

Signature of M

Introduction to Cryptography, Benny Pinkas

Private signature key

4

signer

Public verification key

<

verifier

valid / invalid

page 5

Diffie-Hellman
“New directions in cryptography” (1976)

- In public key encryption

— The encryption function is a trapdoor permutation f
- Everyone can encrypt = compute f(). (using the public key)

« Only Alice can decrypt = compute f -1(). (using her private key)
. Alice can use f for signing
— Alice signs m by computing s=f-1(m).
— Verification is done by computing m=f(s).

- Intuition: since only Alice can compute f (), forgery is
iInfeasible.

- Caveat: none of the established practical signature
schemes following this paradigm is provably secure

- Key generation: (as in RSA)
— Alice picks random p,q. Finds e-d=1 mod (p-1)(g-1).
— Public verification key: (N,e)
— Private signature key: d

- Signing: Given m, Alice computes s=m“ mod N.

- Verification: given m,s and public key (N,e).
— Compute m’ = s® mod N.
— Output “valid” iff m’=m.

Januray 13, 2009 Introduction to Cryptography, Benny Pinkas

page

Message lengths

- A technical problem:
— |m| might be longer than |N|
— m might not be in the domain of f-1()

Solution “hash-and-sign” paradigm:

. Signing: First compute H(m), then compute the
signature f -1(H(M)). Where,

— The range of H() must be contained in the domain of f-1().
— H() must be collision intractable. I.e. it is hard to find m, m’
s.t. Him)=H(m’).
- Verification:
— Compute f(s). Compare to H(m).

- Use of H() is also good for security reasons. See below.

Security of using a hash function

- Intuitively
— Adversary can compute H(), f(), but not H -1(), f -1().
— Can only compute (m,H(m)) by choosing m and computing H().
— Adversary wants to compute (m ,f -3(H(m))).
— To break signature needs to show s s.t. f(s)=H(m). (E.g. s®=H(m).)

— Failed attack strategy 1.
 Pick s, compute f(s), and look for m s.t. H(m)=f(s).

— Failed attack strategy 2:

« Pick m,m’ s.t. H(m)=H(m’). Ask for a signature s of m’
(which is also a signature of m).

- (If H() is not collision resistant, adversary could find m,m’
s.t. Him) = H(m’).)

— This does not mean that the scheme is secure, only that these attacks
fail.

Security definitions for digital signatures

. Attacks against digital signatures

— Key only attack: the adversary knows only the verification
key

-~ Known signature attack: in addition, the adversary has
some message/signature pairs.

— Chosen message attack: the adversary can ask for
sighatures of messages of its choice (e.g. attacking a
notary system).

(Seems even more reasonable than chosen message
attacks against encryption.)

10

Security definitions for digital signatures

- Several levels of success for the adversary

— Existential forgery: the adversary succeeds in forging the
signhature of one message.

— Selective forgery: the adversary succeeds in forging the
signhature of one message of its choice.

— Universal forgery: the adversary can forge the signature of
any message.

— Total break: the adversary finds the private signature key.

. Different levels of security, against different attacks, are
required for different scenarios.

11

Example: simple RSA based signatures

- Key generation: (as in RSA)

— Alice picks random p,q. Defines N=pqg and finds e-d=1
mod (p-1)(g-1).

— Public verification key: (N,e)

— Private signature key: d

. Signing: Given m, Alice computes s=m“ mod N.
. (suppose that there is no hash function H())

- Verification: given m,s and public key (N,e).
— Compute m’ = s mod N.
— Output “valid” iff m’=m.

12

Attacks against plain RSA signatures

. Signature of m is s=m9 mod N.

- Universally forgeable under a chosen message attack:

— Universal forgery: the adversary can forge the signature of
any message of its choice.

— Chosen message attack: the adversary can ask for
sighatures of messages of its choice.

- Existentially forgeable under key only attack.

— Existential forgery: succeeds in forging the signature of at
least one message.

— Key only attack: the adversary knows the public
verification key but does not ask any queries.

13

RSA with a full domain hash function

. Signature is sig(m) = f *1(H(m)) = (H(m))4 mod N.
— H() is such that its range is [1,N]

- The system is no longer homomorphic
— sig(m) - sig(m’) # sig(m-m’)

- Seems hard to generate a random signature

— Computing s¢ is insufficient, since it is also required to
show m s.t. H(m) = s€.

. Proof of security in the random oracle model — where
H() is modeled as a random function

14

RSA with full domain hash —proof of security

 Claim: Assume that H() is a random function, then if
there is a polynomial-time A() which performs
existential forgery with non-negligible probabillity, then it
IS possible to invert the RSA function, on a random
iInput, with non-negligible probability.

. Proof:
— Our input: y. Should compute y4 mod N.

— A() queries H() and a signature oracle sig(), and generates
a signature s of a message for which it did not query sig().

— Suppose A() made at most t queries to H(), asking for
H(m,),...,H(m,). Suppose also that it always queries H(m)
before querying sig(m). (In particular, it asked for H(s).)

— We will show how to use A() to compute y9 mod N.

15

RSA with full domain hash —proof of security

 Proof (contd.)

- Let us first assume that A always forges the signature of m, (the last
guery it sends to H()),

— We can decide how to answer A’s queries to H(),sig().
— Answer queries to H() as follows:
 The answer to the t" query (m,)) is y.

- The answer to the j"" query (j<t) is (r)¢, where r; is random.

— Answer to sig(m) queries:
« These are only asked for m; where j<t. Answer with r,. (Indeed sig(m,)=
(H(m)d=r,)
- A’s output is (m,,S).
- If s is the correct signature, then we found y¢.
« Otherwise we failed.

— Success probability the same as the success probability of A().

16

RSA with full domain hash —proof of security

- Proof (without assuming which m. A will try to sign)
— We can decide how to answer A’s queries to H(),sig().

— Choose a random i in [1,t], answer queries to H() as follows:

- The answer to the ith query (m)) is y.
- The answer to the jth query (j#) Is (r)¢, where r; is random.

— Answer to sig(m) queries:
« If m=m,, jA, then answer with r;. (Indeed sig(m;)= (H(mj))OI =)
« If m=m, then stop. (we failed)
— A’s output is (m,s).
- If m=m, and s is the correct signature, then we found y¢.
« Otherwise we failed.

— Success probability is 1/t times success probability of A().

17

El Gamal signature scheme

. Invented by same person but different than the
encryption scheme. (think why)

- A randomized signhature: same message can have
different signatures.

- Based on the hardness of extracting discrete logs

- The DSA (Digital Signature Algorithm/Standard) that
was adopted by NIST in 1994 is a variation of EI-Gamal
signatures.

18

- Key generation:
- Work in a group Z,” where discrete log is hard.
- Let g be a generator of Z;.
— Private key 1 <a<p-1.
— Public key p, g, y=0g2.

- Signature: (of M)
— Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
— Compute m=H(M).
« r =gk mod p.
« s=(m-r-a)-k?!mod (p-1)
- Signatureisr, s.

Januray 13, 2009 Introduction to Cryptography, Benny Pinkas

page 19

19

- Signature:
— Pick random 1 <k < p-1, s.t. gcd(k,p-1)=1.

-~ Compute
« r=g¥mod p.
« s=(m-r-a)-k!mod (p-1)
. : same rin
- Verification: both places!

_ Accepf/
e 0O<r<
V' -rPEg"modp
. It works since y'-rs = (g@)" -(gK)s= g& -g™a = g™
« Overhead:

— Signature: one (offline) exp. Verification: three exps.

Januray 13, 2009 Introduction to Cryptography, Benny Pinkas page 20

20

El Gamal signature: comments

- Can work in any finite Abelian group

— The discrete log problem appears to be harder in elliptic
curves over finite fields than in Z;* of the same size.

— Therefore can use smaller groups = shorter signatures.
. Forging: find y"- r* =g™ mod p
- E.g., choose random r = gk and either solve dlog of gm/y' to
the base r, orfind s=k*(m -logyy -r) (???7?)
- Notes:
— A different k must be used for every signature

— If no hash function is used (i.e. sign M rather than
m=H(M)), existential forgery is possible

— If receiver doesn’t check that O<r<p, adversary can sign
messages of his choice.

21

Key Infrastructure for symmetric key encryption

- Each user has a shared key with each other user
— A total of n(n-1)/2 keys
— Each user stores n-1 keys

22

- The KDC shares a symmetric key K, with every user u
- Using this key they can establish a trusted channel

« When u wants to communicate with v
— u sends a request to the KDC
— The KDC
- authenticates u

- generates a key K, to be used by u and v
- sends Enc(K,, K,,) to u, and Enc(K K,) tov

\/,/”

tf}w\h

b N

5

Januray 13, 2009 Introduction to Cryptography, Benny Pinkas

page 23

23

- Advantages:
— A total of n keys, one key per user.
— easier management of joining and leaving users.

- Disadvantages:
— The KDC can impersonate anyone
- The KDC is a single point of failure, for both

« Security
- quality of service

 Multiple copies of the KDC
— More security risks
— But better availability

Januray 13, 2009 Introduction to Cryptography, Benny Pinkas

page 24

24

Trusting public keys

- Public key technology requires every user to remember
its private key, and to have access to other users’

public keys

- How can the user verify that a public key PK,
corresponds to user v?
— What can go wrong otherwise?

- A simple solution:

— A trusted public repository of public keys and
corresponding identities

« Doesn’t scale up
« Requires online access per usage of a new public key

25

Certification Authorities (CA)

- A method to bootstrap trust
— Start by trusting a single party and knowing its public key

— Use this to establish trust with other parties (and associate
them with public keys)

- The Certificate Authority (CA) is trusted party.
— All users have a copy of the public key of the CA

— The CA signs Alice’s digital certificate. A simplified
certificate is of the form (Alice, Alice’s public key).

26

- When we get Alice’s certificate, we
— Examine the identity in the certificate
— Verify the signature

— Use the public key given in the certificate to
« Encrypt messages to Alice

- Or, verify signatures of Alice

- The certificate can be sent by Alice without any online
Interaction with the CA.

Januray 13, 2009 Introduction to Cryptography, Benny Pinkas

page 27

27

Certification Authorities (CA)

« Unlike KDCs, the CA does not have to be online to
provide keys to users

— It can therefore be better secured than a KDC
— The CA does not have to be available all the time

. Users only keep a single public key — of the CA

- The certificates are not secret. They can be stored in a
public place.

- When a user wants to communicate with Alice, it can
get her certificate from either her, the CA, or a public
repository.

« A compromised CA
— can mount active attacks (certifying keys as being Alice’s)
— but it cannot decrypt conversations.

28

Certification Authorities (CA)

- An example.

— To connect to a secure web site using SSL or TLS, we
send an https:// command

— The web site sends back a public keyd), and a certificate.
— Our browser

« Checks that the certificate belongs to the url we’re visiting
Checks the expiration date

Checks that the certificate is signed by a CA whose public key
Is known to the browser

Checks the signature

If everything is fine, it chooses a session key and sends it to
the server encrypted with RSA using the server’s public key

) This is a very simplified version of the actual protocol.

29

Certificate:
Data:
Ver si on: 1 (0x0)
Serial Nunber: 7829 (0x1e95)
Signature Al gorithm md5WithRSAEnNcryption
| ssuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consult ing cc,
OU=Certification Services Division, CN=Thawte Server
CA/emailAddress=server-certs@thawte.com
Validity
Not Before: Jul9 16:04:02 1998 GMT
_ Not After : Jul916:04:02 1999 GMT
Subj ect: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU= FreeSoft,
CN=www.freesoft.org/emailAddress=baccala@freesoft.o rg
Subj ect Public Key Info:
Public Key Al gorithm rsaEncryption
RSA Public Key: (1024 bit
Modul us (1024 bit): 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:
33:35:19:d5:0¢:64:h9:3d:41:b2:96:fc:f3:31:e1:
66:36:d0:8e:56:12:44:ba:75:eb:e8:1¢c:9¢c:5b:66:
70:33:52:14:¢9:ec:4f:91:51:70:39:de:53:85:17:
16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
c5:cc:2b:6b:c1:90:¢3:16:31:0d:bf:7a:c7:47:77:
8f:a0:21:¢7:4¢:d0:16:65:00:c1:0f:d7:b8:80:e3:
d2:75:6b:cl:ea:9e:5c:5c:ea:7d:cl:al1:10:bc:b8: €8:35 :1c:9e:27:52:7e:41:8f
) Exponent : 65537 (0x10001))
Signature Algorithm: md5WithRSAEnNcryption
93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d: 9d:
92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f: 92:...

Januray 13, 2009 Introduction to Cryptography, Benny Pinkas

page 30

30

Edit View Go Bookmarks Tools Help

Certificate Viewer:"www.bankpoalim.co.il" ﬂ

General I Details

=

|G [IGL

gon&dt=9248nls=HE

551 Server Certificate

This certificate has been verified for the following uses:

Issued To

Commaon Mame {CM)
Organization (0}
Organizational Unit (OU)
Serial Mumber

Issued By

Common Name (CM)
Organization (0}
Organizational Unit (OU)
Validity

Issued On

Expires On
Fingerprints

5HA1 Fingerprint

MD 5 Fingerprint

www, bankpoalim. co.il

Bank Hapoalim Ltd.

Internet departement

G6C:F5:30:09:89:46:C5:FA: 11:5A:40:CD: 14:6A:EB: A3

<Mot Part Of Certificate =
WeriSign Trust Metwork
VeriSign, Inc.

7/12/2004
7/13/2005

1LEXFGASES 0SS 96: 7R EG:09:40: 17:47:A9: 201 1IF:C5:196:9F
6C:E9:C5:CD:40:E1: 25: 3A:9F:49: 5D:D3: SA:F4:94:EB

... C1Gizmodo EJEducated Guesswork 3 The Mew York Times ... £ The Register: Scifl

0'30197 P11 4p

A":pP7 orTpan
TMM PIynn 07nn
5PN wr mwY nons Ty

13Ny novs” A"21pY YWY YTPan

: VRNYR TP @
LN @

: RED'D @

LIVIRI OYYIA TIT

9107 M7 NN uhTm

0.25% Sw myrwa

muene nodkn ar .MTpann oaon

Rkl R e Lo b e T 0) O ond

o) (o=)

1317 My mnarn b3 ®

prowr bankhaposlim.co.ilf

| & www.bankpoal

31

":} Welcome to Gmail - Mozilla Firefox =
File Edit View Go Bookmarks Tools Help (;

@ O @ O @ Mh;‘:ffgrnail.gu:u:ugle.u:ornf?dist=http%3.-!\%ZF%ZFgmaiI.gmgle.cnm'}‘nZFgmaiI | Go @,
o L < > |

F3Gmail - Inbox (5) JLatest Headlines % Furl It 3 CMET News.com —T... [JSlashdot: News for n... £JGizmodo EJEducated Guesswork £ The Mew York Times ... £ The Register: Seif]

Certificate Viewer:"gmail.google.com™ . ﬂ
b General |Delzis
byl

This certificate has been verified for the following uses:

Ge| SSL Server Certificate
AGC | ' IssuedTo
Common Mame (CN) gmail. google.com
Grmail | " — Lg.,g“!_ delete mail and you P
;| Organization (0) ¥ Gmail Sign In
shouly Organizational Unit (OU) <MNot Part OF Certificate >
Serial Mumber D%EL:TF USEI’HEmE:I
*
Issued By .
received. Password:
Common Mame (CN) <Mot Part Of Certificate > I
. Organization {0) Equifax [~ Dont ask for my
Organizational Unit (OU) Equifax Secure Certificate Autharity password for 2 weeks._
Validity
. Tssueq on TR Sign in |
Expires On 3/31/2006
= Forgot your password?
1 Fingerprints
* 1 SHA1 Fingerprint DO:D5: 54 COeCE: 9. 5E:6C: 32:63:0F:9 1:C 1:CCE2:B0: 23:C0:F8: 70
1 MD5 Fingerprint D4:ALGF:0D:E2:0E:8A: 1F:F4:A2:00:56: 54:84:C0: 56
[
1 Learn more about Grnail.
Check out our new features!
A few words about privacy and Gmail-

es - Terms of Use

(o) (o

Transfering data from gmail.google.com... | 8 omail.good

u have certificates on file that identify these certificate authorities:

Certificate Mame

| Security Device

F Unizeto Sp. z 0.0,

“Certum CA
F VISA

-GP Root 2

“..Yfisa eCommerce Root
F ValiCert, Inc.
~https e, valicert. com/
~http: e, valicert,com/
~http: e, valicert. com/
F VeriSign, Inc,
-Merisign Class 3 Public Primary Certification Authority
-Nerisign Class 1 Public Primary Certification Authority
-Merisign Class 2 Public Primary Certification Authority
-Merisign Class 1 Public Primary Certification Authority - G2
-\erisign Class 2 Public Primary Certification Authority - G2
-Merisign Class 3 Public Primary Certification Authority - G2
-Nerisign Class 4 Public Primary Certification Autharity - G2
-MeriSign Class 1 Public Primary Certification Autharity - G3
-NeriSign Class 2 Public Primary Certification Authority - G3
-Merisian Class 3 Public Primary Certification Autharity - G3
-MeriSign Class 4 Public Primary Certification Autharity - G3
-Zlass 1 Public Primary OCSP Responder
-Class 2 Public Primary QCSP Responder
~Zlass 3 Public Primary OCSP Responder
~\eriSign Time Stamping Authority CA
F beTRUSTed
--beTRUSTed Root CAs
-beTRIUSTed Root CA-Baltimore Implementation
-beTRUSTed Root CA - Entrust Implementation
-beTRUSTed Root CA - RSA Implementation

Builtin Ohject Token

Builtin Object Token
Builtin Object Token

Builtin Object Token
Builtin Object Token
Builtin Object Token

Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token

Builtin Object Token
Builtin Object Token
Builtin Object Token
Builtin Object Token

| (Cirport | (o= |

34

Certificates

- A certificate usually contains the following information
— Owner’s name
— Owner’s public key
— Encryption/signature algorithm
— Name of the CA
— Serial number of the certificate
— Expiry date of the certificate

. Your web browser contains the public keys of some
CAs

- A web site identifies itself by presenting a certificate
which is signed by a chain starting at one of these CAs

35

