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RSA with a full domain hash function

• Signature is sig(m) = f -1(H(m)) = (H(m))d mod N.
– H() is such that its range is [1,N]

• The system is no longer homomorphic
– sig(m) · sig(m’) ≠ sig(m·m’)

• Seems hard to generate a random signature 
– Computing se is insufficient, since it is also required to 

show m s.t. H(m) = se.

• Proof of security in the random oracle model – where 
H() is modeled as a random function



4

page 4Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

El Gamal signature scheme

• Invented by same person but different than the 
encryption scheme. (think why)

• A randomized signature: same message can have 
different signatures.

• Based on the hardness of extracting discrete logs 

• The DSA (Digital Signature Algorithm/Standard) that 
was adopted by NIST in 1994 is a variation of El-Gamal 
signatures. 
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El Gamal signatures

• Key generation:
– Work in a group Zp

* where discrete log is hard. 
– Let g be a generator of Zp

*.
– Private key  1 < a < p-1.
– Public key p, g, y=ga.

• Signature: (of M)
– Pick random 1 < k < p-1,  s.t. gcd(k,p-1)=1.
– Compute m=H(M).

• r = gk mod p.

• s = (m - r·a)·k -1 mod (p-1)

– Signature is r, s.
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El Gamal signatures

• Signature:
– Pick random 1 < k < p-1,  s.t. gcd(k,p-1)=1.
– Compute

• r = gk mod p.

• s = (m - r·a)·k-1 mod (p-1)

• Verification:
– Accept if

• 0 < r < p

• yr · rs = gm mod p

• It works since yr·rs = (ga)r ·(gk)s = gar ·gm-ra = gm

• Overhead: 
– Signature: one (offline) exp.    Verification: three exps.

same r in 
both places!
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El Gamal signature: comments

• Can work in any finite Abelian group
– The discrete log problem appears to be harder in elliptic 

curves over finite fields than in Zp* of the same size.
– Therefore can use smaller groups ⇒ shorter signatures.

• Forging: find  yr · rs = gm mod p
– E.g., choose random r = gk and either solve dlog of gm/yr to 

the base r,   or find s=k-1(m - loggy · r)    (????)
• Notes:

– A different k must be used for every signature
– If no hash function is used (i.e. sign M rather than 

m=H(M)), existential forgery is possible
– If receiver doesn’t check that 0<r<p, adversary can sign 

messages of his choice.
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Trusting public keys

• Public key technology requires every user to remember 
its private key, and to have access to other users’
public keys

• How can the user verify that a public key PKv
corresponds to user v?
– What can go wrong otherwise?

• A simple solution:
– A trusted public repository of public keys and 

corresponding identities
• Doesn’t scale up

• Requires online access per usage of a new public key
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Certification Authorities (CA)

• A method to bootstrap trust
– Start by trusting a single party and knowing its public key
– Use this to establish trust with other parties (and associate 

them with public keys)

• The Certificate Authority (CA) is trusted party.
– All users have a copy of the public key of the CA
– The CA signs Alice’s digital certificate. A simplified 

certificate is of the form  (Alice, Alice’s public key).
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Certification Authorities (CA)

• When we get Alice’s certificate, we 
– Examine the identity in the certificate
– Verify the signature
– Use the public key given in the certificate to

• Encrypt messages to Alice

• Or, verify signatures of Alice

• The certificate can be sent by Alice without any online 
interaction with the CA.
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Certificates

• A certificate usually contains the following information
– Owner’s name
– Owner’s public key
– Encryption/signature algorithm
– Name of the CA
– Serial number of the certificate
– Expiry date of the certificate
– …

• Your web browser contains the public keys of some 
CAs

• A web site identifies itself by presenting a certificate 
which is signed by a chain starting at one of these CAs
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Certification Authorities (CA)

• Unlike KDCs, the CA does not have to be online to 
provide keys to users
– It can therefore be better secured than a KDC
– The CA does not have to be available all the time

• Users only keep a single public key – of the CA
• The certificates are not secret. They can be stored in a 

public place. 
• When a user wants to communicate with Alice, it can 

get her certificate from either her, the CA, or a public 
repository. 

• A compromised CA 
– can mount active attacks (certifying keys as being Alice’s)
– but it cannot decrypt conversations. 
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An example of an X.509 certificate

Certificate:
Data:

Version: 1 (0x0)
Serial Number: 7829 (0x1e95)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consult ing cc, 

OU=Certification Services Division, CN=Thawte Server  
CA/emailAddress=server-certs@thawte.com

Validity
Not Before: Jul 9 16:04:02 1998 GMT
Not After : Jul 9 16:04:02 1999 GMT

Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU= FreeSoft, 
CN=www.freesoft.org/emailAddress=baccala@freesoft.o rg

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus (1024 bit): 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb: 

33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1: 
66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66: 
70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17: 
16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b: 
c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77: 
8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3: 
d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8: e8:35 :1c:9e:27:52:7e:41:8f

Exponent: 65537 (0x10001)
Signature Algorithm: md5WithRSAEncryption

93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d: 9d: 
92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f: 92:…
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Public Key Infrastructure (PKI)

• The goal: build trust on a global level

• Running a CA:
– If people trust you to vouch for other parties, everyone 

needs you.
– A license to print money
– But,

• The CA should limit its responsibilities, buy insurance…

• It should maintain a high level of security

• Bootstrapping: how would everyone get the CA’s public key?
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Public Key Infrastructure (PKI)

• Monopoly: a single CA vouches for all public keys
– Suitable in particular for enterprises.

• Monopoly + delegated CAs:
– top level CA can issue speial certificates for other CAs
– Certificates of the form 

• [ (Alice, PKA)CA3, (CA3, PKCA3)CA1, (CA1, PKCA1)ROOT-CA ]

Root CA

CA1 CA2

CA3

Alice

Bob



17

page 17Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Certificate chain
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Revocation

• Revocation is a key component of PKI
– Each certificate has an expiry date
– But certificates might get stolen, employees might leave 

companies, etc.
– Certificates might therefore need to be revoked before 

their expiry date
– New problem: before using a certificate we must verify that 

it has not been revoked
• Often the most costly aspect of running a large scale public 

key infrastructure (PKI)

• How can this be done efficiently?

• (we won’t discuss this issue this year)
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SSL / TLS
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SSL/TLS

• General structure of secure HTTP connections
– To connect to a secure web site using SSL or TLS, we 

send an https:// command
– The web site sends back a public key(1), and a certificate.
– Our browser

• Checks that the certificate belongs to the url we’re visiting

• Checks the expiration date

• Checks that the certificate is signed by a CA whose public key 
is known to the browser

• Checks the signature

• If everything is fine, it chooses a session key and sends it to 
the server encrypted with RSA using the server’s public key

(1) This is a very simplified version of the actual protocol.
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SSL/TLS

• SSL (Secure Sockets Layer)
– SSL v2

• Released in 1995 with Netscape 1.1

• A flaw found in the key generation algorithm

– SSL v3
• Improved, released in 1996

• Public design process

• TLS (Transport Layer Security)
– IETF standard, RFC 2246

• Common browsers support all these protocols
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SSL Protocol Stack

• SSL/TLS operates over TCP, which ensures reliable 
transport.

• Supports any application protocol (usually used with 
http).
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SSL/TLS Overview

• Handshake Protocol - establishes a session
– Agreement on algorithms and security parameters
– Identity authentication
– Agreement on a key
– Report error conditions to each other

• Record Protocol - Secures the transferred data
– Message encryption and authentication

• Alert Protocol – Error notification (including “fatal”
errors).

• Change Cipher Protocol – Activates the pending crypto 
suite
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Simplified SSL Handshake

Client Server

I want to talk, ciphers I support, RC

Certificate (PKServer), cipher I choose, RS

{S}PKserver , {keyed hash of handshake message}

{keyed hash of handshake message}

Data protected by keys derived from K

K= f (S,RC,RS) K= f (S,RC,RS)
compute compute
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A typical run of a TLS protocol

• C ⇒ S
– ClientHello.protocol.version = “TLS version 1.0”
– ClientHello.random = TC, NC
– ClientHello.session_id = “NULL”
– ClientHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”
– ClientHello.compression_method = “NULL”

• S ⇒ C
– ServerHello.protocol.version = “TLS version 1.0”
– ServerHello.random = TS, NS
– ServerHello.session_id = “1234”
– ServerHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”
– ServerHello.compression_method = “NULL”
– ServerCertificate = pointer to server’s certificate
– ServerHelloDone
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Some additional  issues

• More on S ⇒ C
– The ServerHello message can also contain Certificate 

Request Message
– I.e., server may request client to send its certificate 
– Two fields: certificate type and acceptable CAs

• Negotiating crypto suites
– The crypto suite defines the encryption and authentication 

algorithms and the key lengths to be used. 
– ~30 predefined standard crypto suites
– Selection (SSL v3): Client proposes a set of suites. Server 

selects one. 
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Key generation

• Key computation:
– The key is generated in two steps:
– pre-master secret S is exchanged during handshake
– master secret K is a 48 byte value calculated using pre-

master secret and the random nonces

• Session vs. Connection: a session is relatively long lived. Multiple 
TCP connections can be supported under the same SSL/TSL 
connection.

• For each connection: 6 keys are generated from the master 
secret K and from the nonces. (For each direction: encryption 
key, authentication key, IV.)
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TLS Record Protocol



29

page 29Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Some practical issues in number theory 
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Primality testing

• Why do we need primality testing?
– Essentially all public key cryptographic algorithms use 

large prime numbers
– We therefore need an algorithm for prime number 

generation 
– Suppose we have an algorithm “PrimalityTest” with a 

binary output. 
– We can generate random primes as follows

GeneratePrime(a,b)

1. Choose random number x ∈ [a,b]

2. If PrimalityTest(x) then output “x is 
prime”; otherwise goto line 1.
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Density of prime numbers

• How long will GeneratePrime run?
• Let π(n) specify number of primes ≤ n.

• Prime number theorem:
– π(n)  goes to n / ln n  as n goes to infinity.

• Pretty accurate even for small n (e.g. for n=230 it is off 
by 6%).

• Corollary: a random number in [1,n] is prime with 
probability 1/ln n. (e.g. for n=2512, probability is 1/355).
– The GeneratePrime algorithm is expected to take ln n 

rounds.
– If we skip even numbers, we cut running time by ½. 
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Primality testing

• Primality testing is a decision problem: “is x prime or 
composite?”

• Different than the search problem “find all prime factors 
of x” (“factor x”).

• In this case, the decision problem has an efficient 
solution while the search problem does not.

• First algorithm: Trial division
– Try to divide x by every prime integer smaller than √x  

(sqrt(x)).
– Infeasible for large x.
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Fermat’s test

• Fermat’s theorem: if p is prime then for all 1 ≤ a < p it 
holds that ap-1 = 1 mod p. 

• If we can find an a s.t ax-1 ≠1 mod x, then x is surely 
composite. 
– Surprisingly, the converse is almost always true, and for a 

large percentage of the choices of a.
– Suppose we check only for a=2.

• If 2x-1 != 1 mod x

– Then return COMPOSITE     /for sure

– Otherwise, return PRIME   /we hope

– How accurate is this program?
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Fermat’s test

• Surprisingly, this test is almost always right
– Wrong for only 22 values of x smaller than 100,000
– Probability of error goes down to 0 as x grows

• For |x|=512 bits, probability of error is < 10-20 ≈ 2-66

• For |x|=1024 bits, probability of error is < 10-41 ≈ 2-136

• The test is therefore sufficient for randomly chosen 
candidate primes

• But we need a better test if x is not chosen at random
• Cannot eliminate errors by checking for bases ≠ 2

– x is a Charmichael number if it is composite, but ax-1 = 1
mod x for all 1 ≤ a < x. 

– There are infinitely many Charmichael numbers
– But they are very rare
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Miller-Rabin test

• Works for all numbers (even Charmichael numbers).
– Checks several randomly chosen bases a
– If it finds out that ax-1 = 1 mod x, it checks whether the 

process found a nontrivial root of 1 (≠ 1,-1). If so, it 
outputs COMPOSITE.

The Miller-Rabin test:
1. Write x-1=2cr for an odd r. set comp=0.
2. For i=1 to T

• Pick random a ∈ [1,x-1]. If gcd(a,x)> 1 
set comp=1.

• Compute y0=a
r mod x, yi=(yi-1)

2 mod x for 
i=1..c. If yc≠1, or ∃i, yi=1, yi-1≠±1, set 
comp=1.

3. If comp=1 return COMPOSITE, else PRIME.
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Miller-Rabin test

• Possible values for the sequence y0=ar, y1=a2r… yc=ax-1
.

• <…,d>, where d≠1, decide COMPOSITE.

• <1,1,…,1>, decide PRIME.

• <..,-1,1,..,1>, decide PRIME.

• <…,d,1,…,1>, where d≠±1, decide COMPOSITE.

– For a composite number x, we denote a base a as a non-
witness if it results in the output being “PRIME”.

• Lemma: if x is an odd composite number then the 
number of non-witnesses is at most x/4. 

• Therefore, for any odd integer x, T trials give the wrong 
answer with probability < (1/4)T.
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Breaking News

• Primes ∈ P
– Agrawal, Kayal, Saxena (2004)
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Integer factorization

• The RSA and Rabin cryptosystems use a modulus N
and are insecure if it is possible to factor N.

• Factorization: given N find all prime factors of N. 

• Factoring is the search problem corresponding to the 
primality testing decision problem.
– Primality testing is easy
– What about factoring? 



39

page 39Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Modern factoring algorithms

• The number-theoretic running time function Ln(a,c)

– For a=0, the running time is polynomial in ln(n).
– For a=1, the running time is exponential in ln(n).
– For 0<a<1, the running time is subexponential. 

• Factoring algorithms
– Quadratic field sieve: Ln(1/2, 1)
– General number field sieve: Ln(1/3, 1.9323)
– Elliptic curve method Lp(1/2, 1.41)  (preferable only if 

p<<sqrt(n) )

aa nnc
n ecaL

−

=
1)ln(ln)(ln),(
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Modulus size recommendations

• Factoring algorithms are run on massively distributed 
networks of computers (running in their idle time).

• RSA published a list of factoring challenges. 
• A 512 bit challenge was factored in 1999.
• The largest factored number n=pq. 

– 640 bits (RSA-640)
– Factored on November 2, 2005 using the NFS

• Typical current choices:
– At least 1024-bit RSA moduli should be used
– For better security, longer RSA moduli are used
– For more sensitive applications, key lengths of 2048 bits 

(or higher) are used
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Discrete log algorithms

• Input: (g,y) in a finite group G. Output: x s.t. gx = y in G. 
• Generic vs. special purpose algorithms: generic algorithms do not 

exploit the representation of group elements. 

• Algorithms
– Baby-step giant-step: Generic. |G| can be unknown. Sqrt(|G|) running 

time and memory. 
– Pollard’s rho method: Generic. |G| must be known. Sqrt(|G|) running time 

and O(1) memory. 
– No generic algorithm can do better than O(sqrt(q)), where q is the largest 

prime factor of |G|
– Pohlig-Hellman: Generic. |G| and its factorization must be known. 

O(sqrt(q) ln q), where q is largest prime factor of |G|.
– Therefore for Z*p, p-1 must have a large prime factor. 
– Index calculus algorithm for Z*p: L(1/2, c)
– Number field size for Z*p: L(1/3, 1.923)
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Elliptic Curves

• The best discrete log algorithm which works even if |G| 
can be unknown is the baby-step giant-step algorithm.
– Sqrt(|G|) running time and memory. 

• Other (more efficient) algorithms must know |G|.
– In Zp* we know that | Zp* |=p-1.

• Elliptic curves are groups G where
– The Diffie-Hellman assumption is assumed to hold, and 

therefore we can run DH an ElGamal encryption/sigs.
– |G| is unknown and therefore the best discrete log algorithm 

us pretty slow
– It is therefore believed that a small Elliptic Curve group is as

secure as larger Zp* group.
– Smaller group -> smaller keys and more efficient operations.
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Baby-step giant-step DL algorithm

• Let t=sqrt(|G|).
• x can be represented as x=ut-v, where u,v < sqrt(|G|).

• The algorithm:
– Giant step: compute the pairs (j, g j·t), for 0 ≤ j ≤ t. Store in 

a table keyed by g j·t.
– Baby step: compute y·gi for i=0,1,2…, until you hit an item 

(j, g j·t) in the table. x = jt - i.

• Memory and running time are O(sqrt|G|).
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Baby-step giant-step DL algorithm


