Introduction to Cryptography Lecture 12

El Gamal signature,
Public Key Infrastructure (PKI),
some issues in number theory
Benny Pinkas

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

RSA with a full domain hash function

- Signature is $sig(m) = f^{-1}(H(m)) = (H(m))^d \mod N$.
 - H() is such that its range is [1,N]
- The system is no longer homomorphic
 - $sig(m) \cdot sig(m') ≠ sig(m \cdot m')$
- Seems hard to generate a random signature
 - Computing s^e is insufficient, since it is also required to show m s.t. $H(m) = s^e$.
- Proof of security in the random oracle model where H() is modeled as a random function

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

El Gamal signature scheme

- Invented by same person but different than the encryption scheme. (think why)
- A randomized signature: same message can have different signatures.
- Based on the hardness of extracting discrete logs
- The DSA (Digital Signature Algorithm/Standard) that was adopted by NIST in 1994 is a variation of El-Gamal signatures.

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

El Gamal signatures

- Key generation:
 - Work in a group Z_{p}^{*} where discrete log is hard.
 - Let g be a generator of Z_p^* .
 - Private key 1 < a < p-1.
 - Public key p, g, y=g^a.
- Signature: (of M)
 - Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
 - Compute m=H(M).
 - $r = g^k \mod p$.
 - $s = (m r \cdot a) \cdot k^{-1} \mod (p-1)$
 - Signature is *r*, *s*.

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

El Gamal signatures

- Signature:
 - Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
 - Compute
 - $r = g^k \mod p$.
 - $s = (m r \cdot a) \cdot k^{-1} \mod (p-1)$
- Verification:
 - Accept if
 - 0 < r < p
 - $y^r \cdot r^s = g^m \mod p$
- It works since $y^r \cdot r^s = (g^a)^r \cdot (g^k)^s = g^{ar} \cdot g^{m-ra} = g^m$
- Overhead:
 - Signature: one (offline) exp. Verification: three exps.

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

same *r* in

both places!

El Gamal signature: comments

- Can work in any finite Abelian group
 - The discrete log problem appears to be harder in elliptic curves over finite fields than in Z_p^* of the same size.
 - Therefore can use smaller groups ⇒ shorter signatures.
- Forging: find $y^r \cdot r^s = g^m \mod p$
 - E.g., choose random $r = g^k$ and either solve dlog of g^m/y^r to the base r, or find $s=k^{-1}(m \log_{\alpha} y \cdot r)$ (????)
- Notes:
 - A different k must be used for every signature
 - If no hash function is used (i.e. sign M rather than m=H(M)), existential forgery is possible
 - If receiver doesn't check that 0<r<p, adversary can sign messages of his choice.

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

age 7

Trusting public keys

- Public key technology requires every user to remember its private key, and to have access to other users' public keys
- How can the user verify that a public key PK_v corresponds to user v?
 - What can go wrong otherwise?
- A simple solution:
 - A trusted public repository of public keys and corresponding identities
 - Doesn't scale up
 - Requires online access per usage of a new public key

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

- A method to bootstrap trust
 - Start by trusting a single party and knowing its public key
 - Use this to establish trust with other parties (and associate them with public keys)
- The Certificate Authority (CA) is trusted party.
 - All users have a copy of the public key of the CA
 - The CA signs Alice's digital certificate. A simplified certificate is of the form (Alice, Alice's public key).

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

- When we get Alice's certificate, we
 - Examine the identity in the certificate
 - Verify the signature
 - Use the public key given in the certificate to
 - Encrypt messages to Alice
 - Or, verify signatures of Alice
- The certificate can be sent by Alice without any online interaction with the CA.

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Certificates

- A certificate usually contains the following information
 - Owner's name
 - Owner's public key
 - Encryption/signature algorithm
 - Name of the CA
 - Serial number of the certificate
 - Expiry date of the certificate
 - **–** ...
- Your web browser contains the public keys of some CAs
- A web site identifies itself by presenting a certificate which is signed by a chain starting at one of these CAs

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

- Unlike KDCs, the CA does not have to be online to provide keys to users
 - It can therefore be better secured than a KDC
 - The CA does not have to be available all the time
- Users only keep a single public key of the CA
- The certificates are not secret. They can be stored in a public place.
- When a user wants to communicate with Alice, it can get her certificate from either her, the CA, or a public repository.
- A compromised CA
 - can mount active attacks (certifying keys as being Alice's)
 - but it cannot decrypt conversations.

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

An example of an X.509 certificate

```
Certificate:
  Data:
    Version: 1 (0x0)
    Serial Number: 7829 (0x1e95)
    Signature Algorithm: md5WithRSAEncryption
    Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,
      OU=Certification Services Division, CN=Thawte Server
       CA/emailAddress=server-certs@thawte.com
    Validity
          Not Before: Jul 9 16:04:02 1998 GMT
          Not After: Jul 9 16:04:02 1999 GMT
    Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU=FreeSoft,
       CN=www.freesoft.org/emailAddress=baccala@freesoft.org
    Subject Public Key Info:
          Public Key Algorithm: rsaEncryption
          RSA Public Key: (1024 bit)
          Modulus (1024 bit): 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:
            33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:
            66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66:
            70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:
           16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
           c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77:
           8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:
           d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8: e8:35:1c:9e:27:52:7e:41:8f
          Exponent: 65537 (0x10001)
  Signature Algorithm: md5WithRSAEncryption
    93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:
       92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:...
```


Public Key Infrastructure (PKI)

- The goal: build trust on a global level
- Running a CA:
 - If people trust you to vouch for other parties, everyone needs you.
 - A license to print money
 - But,
 - The CA should limit its responsibilities, buy insurance...
 - It should maintain a high level of security
 - Bootstrapping: how would everyone get the CA's public key?

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Public Key Infrastructure (PKI)

- Monopoly: a single CA vouches for all public keys
 - Suitable in particular for enterprises.
- Monopoly + delegated CAs:
 - top level CA can issue speial certificates for other CAs
 - Certificates of the form
 - [(Alice, PK_A)_{CA3}, (CA3, PK_{CA3})_{CA1}, (CA1, PK_{CA1})_{ROOT-CA}]

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Revocation

- Revocation is a key component of PKI
 - Each certificate has an expiry date
 - But certificates might get stolen, employees might leave companies, etc.
 - Certificates might therefore need to be revoked before their expiry date
 - New problem: before using a certificate we must verify that it has not been revoked
 - Often the most costly aspect of running a large scale public key infrastructure (PKI)
 - How can this be done efficiently?
 - (we won't discuss this issue this year)

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

SSL/TLS

- General structure of secure HTTP connections
 - To connect to a secure web site using SSL or TLS, we send an https:// command
 - The web site sends back a public key⁽¹⁾, and a certificate.
 - Our browser
 - Checks that the certificate belongs to the url we're visiting
 - Checks the expiration date
 - Checks that the certificate is signed by a CA whose public key is known to the browser
 - Checks the signature
 - If everything is fine, it chooses a session key and sends it to the server encrypted with RSA using the server's public key

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

⁽¹⁾ This is a very simplified version of the actual protocol.

SSL/TLS

- SSL (Secure Sockets Layer)
 - SSL v2
 - Released in 1995 with Netscape 1.1
 - A flaw found in the key generation algorithm
 - SSL v3
 - Improved, released in 1996
 - Public design process
- TLS (Transport Layer Security)
 - IETF standard, RFC 2246
- Common browsers support all these protocols

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

SSL Protocol Stack

- SSL/TLS operates over TCP, which ensures reliable transport.
- Supports any application protocol (usually used with http).

SSL Handshake Protocol	SSL Change Cipher Spec	SSL Alert Protocol	НТТР	Telnet	•••
SSL Record Protocol					
TCP					
IP					

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

SSL/TLS Overview

- Handshake Protocol establishes a session
 - Agreement on algorithms and security parameters
 - Identity authentication
 - Agreement on a key
 - Report error conditions to each other
- Record Protocol Secures the transferred data
 - Message encryption and authentication
- Alert Protocol Error notification (including "fatal" errors).
- Change Cipher Protocol Activates the pending crypto suite

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Simplified SSL Handshake

Server Client I want to talk, ciphers I support, R_C Certificate (PK_{Server}), cipher I choose, R_S $\{S\}_{PKserver}$, {keyed hash of handshake message} compute compute $K = f(S,R_C,R_S)$ {keyed hash of handshake message} $K = f(\hat{S}, R_C, R_S)$ Data protected by keys derived from *K* Introduction to Cryptography, Benny Pinkas Januray 20, 2009

A typical run of a TLS protocol

- $C \Rightarrow S$
 - ClientHello.protocol.version = "TLS version 1.0"
 - ClientHello.random = T_C , N_C
 - ClientHello.session_id = "NULL"
 - ClientHello.crypto_suite = "RSA: encryption.SHA-1:HMAC"
 - ClientHello.compression_method = "NULL"
- $S \Rightarrow C$
 - ServerHello.protocol.version = "TLS version 1.0"
 - ServerHello.random = T_S , N_S
 - ServerHello.session_id = "1234"
 - ServerHello.crypto_suite = "RSA: encryption.SHA-1:HMAC"
 - ServerHello.compression_method = "NULL"
 - ServerCertificate = pointer to server's certificate
 - ServerHelloDone

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Some additional issues

- More on $S \Rightarrow C$
 - The ServerHello message can also contain Certificate Request Message
 - I.e., server may request client to send its certificate
 - Two fields: certificate type and acceptable CAs
- Negotiating crypto suites
 - The crypto suite defines the encryption and authentication algorithms and the key lengths to be used.
 - ~30 predefined standard crypto suites
 - Selection (SSL v3): Client proposes a set of suites. Server selects one.

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Key generation

- Key computation:
 - The key is generated in two steps:
 - pre-master secret S is exchanged during handshake
 - master secret K is a 48 byte value calculated using premaster secret and the random nonces
- Session vs. Connection: a session is relatively long lived. Multiple TCP connections can be supported under the same SSL/TSL connection.
- For each connection: 6 keys are generated from the master secret *K* and from the nonces. (For each direction: encryption key, authentication key, IV.)

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Primality testing

- Why do we need primality testing?
 - Essentially all public key cryptographic algorithms use large prime numbers
 - We therefore need an algorithm for prime number generation
 - Suppose we have an algorithm "Primality<u>Test</u>" with a binary output.
 - We can generate random primes as follows GeneratePrime(a,b)
 - 1. Choose random number $x \in [a,b]$
 - 2. If PrimalityTest(x) then output "x is prime"; otherwise goto line 1.

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Density of prime numbers

- How long will GeneratePrime run?
- Let $\pi(n)$ specify number of primes $\leq n$.
- Prime number theorem:
 - $-\pi(n)$ goes to n / ln n as n goes to infinity.
- Pretty accurate even for small n (e.g. for n=2³⁰ it is off by 6%).
- Corollary: a random number in [1,n] is prime with probability 1/ln n. (e.g. for $n=2^{512}$, probability is 1/355).
 - The GeneratePrime algorithm is expected to take In n rounds.
 - If we skip even numbers, we cut running time by $\frac{1}{2}$.

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Primality testing

- Primality testing is a decision problem: "is x prime or composite?"
- Different than the search problem "find all prime factors of x" ("factor x").
- In this case, the decision problem has an efficient solution while the search problem does not.
- First algorithm: Trial division
 - Try to divide x by every prime integer smaller than \sqrt{x} (sqrt(x)).
 - Infeasible for large x.

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Fermat's test

- Fermat's theorem: if p is prime then for all $1 \le a < p$ it holds that $a^{p-1} = 1 \mod p$.
- If we can find an a s.t $a^{x-1} \neq 1 \mod x$, then x is surely composite.
 - Surprisingly, the converse is almost always true, and for a large percentage of the choices of a.
 - Suppose we check only for a=2.

```
• If 2^{x-1} != 1 \mod x

Then return COMPOSITE /for sure

Otherwise, return PRIME /we hope
```

– How accurate is this program?

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Fermat's test

- Surprisingly, this test is almost always right
 - Wrong for only 22 values of x smaller than 100,000
 - Probability of error goes down to 0 as x grows
 - For |x|=512 bits, probability of error is $< 10^{-20} \approx 2^{-66}$
 - For |x|=1024 bits, probability of error is $< 10^{-41} \approx 2^{-136}$
- The test is therefore sufficient for randomly chosen candidate primes
- But we need a better test if x is not chosen at random.
- Cannot eliminate errors by checking for bases ≠ 2
 - x is a Charmichael number if it is composite, but $a^{x-1} = 1$ mod x for all $1 \le a < x$.
 - There are infinitely many Charmichael numbers
 - But they are very rare

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Miller-Rabin test

- Works for all numbers (even Charmichael numbers).
 - Checks several randomly chosen bases a
 - If it finds out that $a^{x-1} = 1 \mod x$, it checks whether the process found a nontrivial root of 1 ($\neq 1,-1$). If so, it outputs COMPOSITE.

The Miller-Rabin test:

- 1. Write $x-1=2^c r$ for an odd r. set comp=0.
- 2. For i=1 to T
 - Pick random $a \in [1,x-1]$. If gcd(a,x) > 1 set comp=1.
 - Compute $y_0=a^r \mod x$, $y_i=(y_{i-1})^2 \mod x$ for i=1..c. If $y_c\neq 1$, or $\exists i$, $y_i=1$, $y_{i-1}\neq \pm 1$, set comp=1.
- 3. If comp=1 return COMPOSITE, else PRIME.

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Miller-Rabin test

- Possible values for the sequence $y_0 = a^r$, $y_1 = a^{2r}$... $y_c = a^{x-1}$
 - <...,d>, where $d\neq 1$, decide COMPOSITE.
 - <1,1,...,1>, decide PRIME.
 - <...,-1,1,...,1>, decide PRIME.
 - <...,d,1,...,1>, where $d\neq\pm1$, decide COMPOSITE.
 - For a composite number x, we denote a base a as a nonwitness if it results in the output being "PRIME".
- Lemma: if x is an odd composite number then the number of non-witnesses is at most x/4.
- Therefore, for any odd integer x, T trials give the wrong answer with probability $< (1/4)^T$.

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Breaking News

- Primes \in P
 - Agrawal, Kayal, Saxena (2004)

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Integer factorization

- The RSA and Rabin cryptosystems use a modulus N
 and are insecure if it is possible to factor N.
- Factorization: given N find all prime factors of N.
- Factoring is the search problem corresponding to the primality testing decision problem.
 - Primality testing is easy
 - What about factoring?

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Modern factoring algorithms

• The number-theoretic running time function L_n(a,c)

$$L_n(a,c) = e^{c(\ln n)^a (\ln \ln n)^{1-a}}$$

- For a=0, the running time is polynomial in ln(n).
- For a=1, the running time is exponential in ln(n).
- For 0<a<1, the running time is subexponential.
- Factoring algorithms
 - Quadratic field sieve: L_n(1/2, 1)
 - General number field sieve: L_n(1/3, 1.9323)
 - Elliptic curve method $L_p(1/2, 1.41)$ (preferable only if p << sqrt(n))

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Modulus size recommendations

- Factoring algorithms are run on massively distributed networks of computers (running in their idle time).
- RSA published a list of factoring challenges.
- A 512 bit challenge was factored in 1999.
- The largest factored number *n*=*pq*.
 - 640 bits (RSA-640)
 - Factored on November 2, 2005 using the NFS
- Typical current choices:
 - At least 1024-bit RSA moduli should be used
 - For better security, longer RSA moduli are used
 - For more sensitive applications, key lengths of 2048 bits (or higher) are used

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Discrete log algorithms

- Input: (g,y) in a finite group G. Output: x s.t. $g^x = y$ in G.
- Generic vs. special purpose algorithms: generic algorithms do not exploit the representation of group elements.
- Algorithms
 - Baby-step giant-step: Generic. |G| can be unknown. Sqrt(|G|) running time and memory.
 - Pollard's rho method: Generic. |G| must be known. Sqrt(|G|) running time and O(1) memory.
 - No generic algorithm can do better than O(sqrt(q)), where q is the largest prime factor of |G|
 - Pohlig-Hellman: Generic. |G| and its factorization must be known.
 O(sqrt(q) ln q), where q is largest prime factor of |G|.
 - Therefore for Z_p^* , p-1 must have a large prime factor.
 - Index calculus algorithm for Z*_p: L(1/2, c)
 - Number field size for Z*_p: L(1/3, 1.923)

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Elliptic Curves

- The best discrete log algorithm which works even if |G| can be unknown is the baby-step giant-step algorithm.
 - Sqrt(|G|) running time and memory.
- Other (more efficient) algorithms must know |G|.
 - In Z_p^* we know that $|Z_p^*|=p-1$.
- Elliptic curves are groups G where
 - The Diffie-Hellman assumption is assumed to hold, and therefore we can run DH an ElGamal encryption/sigs.
 - |G| is unknown and therefore the best discrete log algorithm us pretty slow
 - It is therefore believed that a small Elliptic Curve group is as secure as larger Z_{D}^{*} group.
 - Smaller group -> smaller keys and more efficient operations.

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

Baby-step giant-step DL algorithm

- Let t=sqrt(|G|).
- x can be represented as x=ut-v, where u,v < sqrt(|G|).
- The algorithm:
 - Giant step: compute the pairs $(j, g^{j \cdot t})$, for $0 \le j \le t$. Store in a table keyed by $g^{j \cdot t}$.
 - Baby step: compute $y \cdot g^i$ for i=0,1,2..., until you hit an item $(j, g^{j\cdot t})$ in the table. x = jt i.
- Memory and running time are O(sqrt|G|).

Januray 20, 2009

Introduction to Cryptography, Benny Pinkas

