
1

page 1Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Introduction to Cryptography
Lecture 12

El Gamal signature,
Public Key Infrastructure (PKI),
some issues in number theory

Benny Pinkas

2

page 2Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Signing/verification process

Document M
signing

algorithm

Private signature key

Signature of M

Public verification key

verification

algorithm

valid / invalid

signer

verifier Signature
depends on M

3

page 3Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

RSA with a full domain hash function

• Signature is sig(m) = f -1(H(m)) = (H(m))d mod N.
– H() is such that its range is [1,N]

• The system is no longer homomorphic
– sig(m) · sig(m’) ≠ sig(m·m’)

• Seems hard to generate a random signature
– Computing se is insufficient, since it is also required to

show m s.t. H(m) = se.

• Proof of security in the random oracle model – where
H() is modeled as a random function

4

page 4Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

El Gamal signature scheme

• Invented by same person but different than the
encryption scheme. (think why)

• A randomized signature: same message can have
different signatures.

• Based on the hardness of extracting discrete logs

• The DSA (Digital Signature Algorithm/Standard) that
was adopted by NIST in 1994 is a variation of El-Gamal
signatures.

5

page 5Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

El Gamal signatures

• Key generation:
– Work in a group Zp

* where discrete log is hard.
– Let g be a generator of Zp

*.
– Private key 1 < a < p-1.
– Public key p, g, y=ga.

• Signature: (of M)
– Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
– Compute m=H(M).

• r = gk mod p.

• s = (m - r·a)·k -1 mod (p-1)

– Signature is r, s.

6

page 6Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

El Gamal signatures

• Signature:
– Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
– Compute

• r = gk mod p.

• s = (m - r·a)·k-1 mod (p-1)

• Verification:
– Accept if

• 0 < r < p

• yr · rs = gm mod p

• It works since yr·rs = (ga)r ·(gk)s = gar ·gm-ra = gm

• Overhead:
– Signature: one (offline) exp. Verification: three exps.

same r in
both places!

7

page 7Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

El Gamal signature: comments

• Can work in any finite Abelian group
– The discrete log problem appears to be harder in elliptic

curves over finite fields than in Zp* of the same size.
– Therefore can use smaller groups ⇒ shorter signatures.

• Forging: find yr · rs = gm mod p
– E.g., choose random r = gk and either solve dlog of gm/yr to

the base r, or find s=k-1(m - loggy · r) (????)
• Notes:

– A different k must be used for every signature
– If no hash function is used (i.e. sign M rather than

m=H(M)), existential forgery is possible
– If receiver doesn’t check that 0<r<p, adversary can sign

messages of his choice.

8

page 8Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Trusting public keys

• Public key technology requires every user to remember
its private key, and to have access to other users’
public keys

• How can the user verify that a public key PKv
corresponds to user v?
– What can go wrong otherwise?

• A simple solution:
– A trusted public repository of public keys and

corresponding identities
• Doesn’t scale up

• Requires online access per usage of a new public key

9

page 9Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

• A method to bootstrap trust
– Start by trusting a single party and knowing its public key
– Use this to establish trust with other parties (and associate

them with public keys)

• The Certificate Authority (CA) is trusted party.
– All users have a copy of the public key of the CA
– The CA signs Alice’s digital certificate. A simplified

certificate is of the form (Alice, Alice’s public key).

10

page 10Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

• When we get Alice’s certificate, we
– Examine the identity in the certificate
– Verify the signature
– Use the public key given in the certificate to

• Encrypt messages to Alice

• Or, verify signatures of Alice

• The certificate can be sent by Alice without any online
interaction with the CA.

11

page 11Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Certificates

• A certificate usually contains the following information
– Owner’s name
– Owner’s public key
– Encryption/signature algorithm
– Name of the CA
– Serial number of the certificate
– Expiry date of the certificate
– …

• Your web browser contains the public keys of some
CAs

• A web site identifies itself by presenting a certificate
which is signed by a chain starting at one of these CAs

12

page 12Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

• Unlike KDCs, the CA does not have to be online to
provide keys to users
– It can therefore be better secured than a KDC
– The CA does not have to be available all the time

• Users only keep a single public key – of the CA
• The certificates are not secret. They can be stored in a

public place.
• When a user wants to communicate with Alice, it can

get her certificate from either her, the CA, or a public
repository.

• A compromised CA
– can mount active attacks (certifying keys as being Alice’s)
– but it cannot decrypt conversations.

13

page 13Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

An example of an X.509 certificate

Certificate:
Data:

Version: 1 (0x0)
Serial Number: 7829 (0x1e95)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consult ing cc,

OU=Certification Services Division, CN=Thawte Server
CA/emailAddress=server-certs@thawte.com

Validity
Not Before: Jul 9 16:04:02 1998 GMT
Not After : Jul 9 16:04:02 1999 GMT

Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU= FreeSoft,
CN=www.freesoft.org/emailAddress=baccala@freesoft.o rg

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus (1024 bit): 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:

33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:
66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66:
70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:
16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77:
8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:
d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8: e8:35 :1c:9e:27:52:7e:41:8f

Exponent: 65537 (0x10001)
Signature Algorithm: md5WithRSAEncryption

93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d: 9d:
92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f: 92:…

14

page 14Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

15

page 15Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Public Key Infrastructure (PKI)

• The goal: build trust on a global level

• Running a CA:
– If people trust you to vouch for other parties, everyone

needs you.
– A license to print money
– But,

• The CA should limit its responsibilities, buy insurance…

• It should maintain a high level of security

• Bootstrapping: how would everyone get the CA’s public key?

16

page 16Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Public Key Infrastructure (PKI)

• Monopoly: a single CA vouches for all public keys
– Suitable in particular for enterprises.

• Monopoly + delegated CAs:
– top level CA can issue speial certificates for other CAs
– Certificates of the form

• [(Alice, PKA)CA3, (CA3, PKCA3)CA1, (CA1, PKCA1)ROOT-CA]

Root CA

CA1 CA2

CA3

Alice

Bob

17

page 17Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Certificate chain

18

page 18Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Revocation

• Revocation is a key component of PKI
– Each certificate has an expiry date
– But certificates might get stolen, employees might leave

companies, etc.
– Certificates might therefore need to be revoked before

their expiry date
– New problem: before using a certificate we must verify that

it has not been revoked
• Often the most costly aspect of running a large scale public

key infrastructure (PKI)

• How can this be done efficiently?

• (we won’t discuss this issue this year)

19

page 19Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

SSL / TLS

20

page 20Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

SSL/TLS

• General structure of secure HTTP connections
– To connect to a secure web site using SSL or TLS, we

send an https:// command
– The web site sends back a public key(1), and a certificate.
– Our browser

• Checks that the certificate belongs to the url we’re visiting

• Checks the expiration date

• Checks that the certificate is signed by a CA whose public key
is known to the browser

• Checks the signature

• If everything is fine, it chooses a session key and sends it to
the server encrypted with RSA using the server’s public key

(1) This is a very simplified version of the actual protocol.

21

page 21Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

SSL/TLS

• SSL (Secure Sockets Layer)
– SSL v2

• Released in 1995 with Netscape 1.1

• A flaw found in the key generation algorithm

– SSL v3
• Improved, released in 1996

• Public design process

• TLS (Transport Layer Security)
– IETF standard, RFC 2246

• Common browsers support all these protocols

22

page 22Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

SSL Protocol Stack

• SSL/TLS operates over TCP, which ensures reliable
transport.

• Supports any application protocol (usually used with
http).

23

page 23Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

SSL/TLS Overview

• Handshake Protocol - establishes a session
– Agreement on algorithms and security parameters
– Identity authentication
– Agreement on a key
– Report error conditions to each other

• Record Protocol - Secures the transferred data
– Message encryption and authentication

• Alert Protocol – Error notification (including “fatal”
errors).

• Change Cipher Protocol – Activates the pending crypto
suite

24

page 24Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Simplified SSL Handshake

Client Server

I want to talk, ciphers I support, RC

Certificate (PKServer), cipher I choose, RS

{S}PKserver , {keyed hash of handshake message}

{keyed hash of handshake message}

Data protected by keys derived from K

K= f (S,RC,RS) K= f (S,RC,RS)
compute compute

25

page 25Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

A typical run of a TLS protocol

• C ⇒ S
– ClientHello.protocol.version = “TLS version 1.0”
– ClientHello.random = TC, NC
– ClientHello.session_id = “NULL”
– ClientHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”
– ClientHello.compression_method = “NULL”

• S ⇒ C
– ServerHello.protocol.version = “TLS version 1.0”
– ServerHello.random = TS, NS
– ServerHello.session_id = “1234”
– ServerHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”
– ServerHello.compression_method = “NULL”
– ServerCertificate = pointer to server’s certificate
– ServerHelloDone

26

page 26Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Some additional issues

• More on S ⇒ C
– The ServerHello message can also contain Certificate

Request Message
– I.e., server may request client to send its certificate
– Two fields: certificate type and acceptable CAs

• Negotiating crypto suites
– The crypto suite defines the encryption and authentication

algorithms and the key lengths to be used.
– ~30 predefined standard crypto suites
– Selection (SSL v3): Client proposes a set of suites. Server

selects one.

27

page 27Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Key generation

• Key computation:
– The key is generated in two steps:
– pre-master secret S is exchanged during handshake
– master secret K is a 48 byte value calculated using pre-

master secret and the random nonces

• Session vs. Connection: a session is relatively long lived. Multiple
TCP connections can be supported under the same SSL/TSL
connection.

• For each connection: 6 keys are generated from the master
secret K and from the nonces. (For each direction: encryption
key, authentication key, IV.)

28

page 28Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

TLS Record Protocol

29

page 29Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Some practical issues in number theory

30

page 30Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Primality testing

• Why do we need primality testing?
– Essentially all public key cryptographic algorithms use

large prime numbers
– We therefore need an algorithm for prime number

generation
– Suppose we have an algorithm “PrimalityTest” with a

binary output.
– We can generate random primes as follows

GeneratePrime(a,b)

1. Choose random number x ∈ [a,b]

2. If PrimalityTest(x) then output “x is
prime”; otherwise goto line 1.

31

page 31Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Density of prime numbers

• How long will GeneratePrime run?
• Let π(n) specify number of primes ≤ n.

• Prime number theorem:
– π(n) goes to n / ln n as n goes to infinity.

• Pretty accurate even for small n (e.g. for n=230 it is off
by 6%).

• Corollary: a random number in [1,n] is prime with
probability 1/ln n. (e.g. for n=2512, probability is 1/355).
– The GeneratePrime algorithm is expected to take ln n

rounds.
– If we skip even numbers, we cut running time by ½.

32

page 32Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Primality testing

• Primality testing is a decision problem: “is x prime or
composite?”

• Different than the search problem “find all prime factors
of x” (“factor x”).

• In this case, the decision problem has an efficient
solution while the search problem does not.

• First algorithm: Trial division
– Try to divide x by every prime integer smaller than √x

(sqrt(x)).
– Infeasible for large x.

33

page 33Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Fermat’s test

• Fermat’s theorem: if p is prime then for all 1 ≤ a < p it
holds that ap-1 = 1 mod p.

• If we can find an a s.t ax-1 ≠1 mod x, then x is surely
composite.
– Surprisingly, the converse is almost always true, and for a

large percentage of the choices of a.
– Suppose we check only for a=2.

• If 2x-1 != 1 mod x

– Then return COMPOSITE /for sure

– Otherwise, return PRIME /we hope

– How accurate is this program?

34

page 34Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Fermat’s test

• Surprisingly, this test is almost always right
– Wrong for only 22 values of x smaller than 100,000
– Probability of error goes down to 0 as x grows

• For |x|=512 bits, probability of error is < 10-20 ≈ 2-66

• For |x|=1024 bits, probability of error is < 10-41 ≈ 2-136

• The test is therefore sufficient for randomly chosen
candidate primes

• But we need a better test if x is not chosen at random
• Cannot eliminate errors by checking for bases ≠ 2

– x is a Charmichael number if it is composite, but ax-1 = 1
mod x for all 1 ≤ a < x.

– There are infinitely many Charmichael numbers
– But they are very rare

35

page 35Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Miller-Rabin test

• Works for all numbers (even Charmichael numbers).
– Checks several randomly chosen bases a
– If it finds out that ax-1 = 1 mod x, it checks whether the

process found a nontrivial root of 1 (≠ 1,-1). If so, it
outputs COMPOSITE.

The Miller-Rabin test:
1. Write x-1=2cr for an odd r. set comp=0.
2. For i=1 to T

• Pick random a ∈ [1,x-1]. If gcd(a,x)> 1
set comp=1.

• Compute y0=a
r mod x, yi=(yi-1)

2 mod x for
i=1..c. If yc≠1, or ∃i, yi=1, yi-1≠±1, set
comp=1.

3. If comp=1 return COMPOSITE, else PRIME.

36

page 36Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Miller-Rabin test

• Possible values for the sequence y0=ar, y1=a2r… yc=ax-1
.

• <…,d>, where d≠1, decide COMPOSITE.

• <1,1,…,1>, decide PRIME.

• <..,-1,1,..,1>, decide PRIME.

• <…,d,1,…,1>, where d≠±1, decide COMPOSITE.

– For a composite number x, we denote a base a as a non-
witness if it results in the output being “PRIME”.

• Lemma: if x is an odd composite number then the
number of non-witnesses is at most x/4.

• Therefore, for any odd integer x, T trials give the wrong
answer with probability < (1/4)T.

37

page 37Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Breaking News

• Primes ∈ P
– Agrawal, Kayal, Saxena (2004)

38

page 38Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Integer factorization

• The RSA and Rabin cryptosystems use a modulus N
and are insecure if it is possible to factor N.

• Factorization: given N find all prime factors of N.

• Factoring is the search problem corresponding to the
primality testing decision problem.
– Primality testing is easy
– What about factoring?

39

page 39Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Modern factoring algorithms

• The number-theoretic running time function Ln(a,c)

– For a=0, the running time is polynomial in ln(n).
– For a=1, the running time is exponential in ln(n).
– For 0<a<1, the running time is subexponential.

• Factoring algorithms
– Quadratic field sieve: Ln(1/2, 1)
– General number field sieve: Ln(1/3, 1.9323)
– Elliptic curve method Lp(1/2, 1.41) (preferable only if

p<<sqrt(n))

aa nnc
n ecaL

−

=
1)ln(ln)(ln),(

40

page 40Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Modulus size recommendations

• Factoring algorithms are run on massively distributed
networks of computers (running in their idle time).

• RSA published a list of factoring challenges.
• A 512 bit challenge was factored in 1999.
• The largest factored number n=pq.

– 640 bits (RSA-640)
– Factored on November 2, 2005 using the NFS

• Typical current choices:
– At least 1024-bit RSA moduli should be used
– For better security, longer RSA moduli are used
– For more sensitive applications, key lengths of 2048 bits

(or higher) are used

41

page 41Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Discrete log algorithms

• Input: (g,y) in a finite group G. Output: x s.t. gx = y in G.
• Generic vs. special purpose algorithms: generic algorithms do not

exploit the representation of group elements.

• Algorithms
– Baby-step giant-step: Generic. |G| can be unknown. Sqrt(|G|) running

time and memory.
– Pollard’s rho method: Generic. |G| must be known. Sqrt(|G|) running time

and O(1) memory.
– No generic algorithm can do better than O(sqrt(q)), where q is the largest

prime factor of |G|
– Pohlig-Hellman: Generic. |G| and its factorization must be known.

O(sqrt(q) ln q), where q is largest prime factor of |G|.
– Therefore for Z*p, p-1 must have a large prime factor.
– Index calculus algorithm for Z*p: L(1/2, c)
– Number field size for Z*p: L(1/3, 1.923)

42

page 42Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Elliptic Curves

• The best discrete log algorithm which works even if |G|
can be unknown is the baby-step giant-step algorithm.
– Sqrt(|G|) running time and memory.

• Other (more efficient) algorithms must know |G|.
– In Zp* we know that | Zp* |=p-1.

• Elliptic curves are groups G where
– The Diffie-Hellman assumption is assumed to hold, and

therefore we can run DH an ElGamal encryption/sigs.
– |G| is unknown and therefore the best discrete log algorithm

us pretty slow
– It is therefore believed that a small Elliptic Curve group is as

secure as larger Zp* group.
– Smaller group -> smaller keys and more efficient operations.

43

page 43Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Baby-step giant-step DL algorithm

• Let t=sqrt(|G|).
• x can be represented as x=ut-v, where u,v < sqrt(|G|).

• The algorithm:
– Giant step: compute the pairs (j, g j·t), for 0 ≤ j ≤ t. Store in

a table keyed by g j·t.
– Baby step: compute y·gi for i=0,1,2…, until you hit an item

(j, g j·t) in the table. x = jt - i.

• Memory and running time are O(sqrt|G|).

44

page 44Januray 20, 2009 Introduction to Cryptography, Benny Pinkas

Baby-step giant-step DL algorithm

