Introduction to Cryptography

Lecture 4

Benny Pinkas

Block Ciphers

- Plaintexts, ciphertexts of fixed length, |m|. Usually, |m|=64 or |m|=128 bits.
- The encryption algorithm E_{k} is a permutation over $\{0,1\}^{|m|}$, and the decryption D_{k} is its inverse. (They are not permutations of the bit order, but rather of the entire string.)
- Ideally, use a random permutation.
- Can only be implemented using a table with $2^{|m|}$ entries :
- Instead, use a pseudo-random permutation, keyed by a key k.
- Implemented by a computer program whose
 input is m, k.
- We learned last week how to use a block cipher for encrypting messages longer than the block size.

Pseudo-random functions (PRFs)

- $F:\{0,1\}^{*} \times\{0,1\}^{*} \rightarrow\{0,1\}^{*}$
- The first input is the key, and once chosen it is kept fixed.
- For simplicity, assume $F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- $F(k, x)$ is written as $F_{k}(x)$
- F is pseudo-random if $F_{k}()$ (where k is chosen uniformly at random) is indistinguishable (to a polynomial distinguisher D) from a function f chosen at random from all functions mapping $\{0,1\}^{n}$ to $\{0,1\}^{n}$
- There are 2^{n} choices of F_{k}, whereas there are $\left(2^{n}\right)^{2 n}$ choices for f.
- The distinguisher D's task:
- We choose a function G. With probability $1 / 2 G$ is F_{k} (where $k \epsilon_{R}$ $\left.\{0,1\}^{\mathrm{n}}\right)$, and with probability $1 / 2$ it is a random function f.
- D can compute $G\left(x_{1}\right), G\left(x_{2}\right), \ldots$ for any x_{1}, x_{2}, \ldots it chooses.
- D must say if $G=F_{k}$ or $G=f$.
- F_{k} is pseudo-random if D succeeds with prob $1 / 2+$ negligible..

Pseudo-random permutations (PRPs)

- $F_{k}(x)$ is a keyed permutation if for every choice of k, $F_{k}()$ is one-to-one.
- Note that in this case $F_{k}(x)$ has an inverse, namely for every y there is exactly one x for which $F_{k}(x)=y$.
- $F_{k}(x)$ is a pseudo-random permutation if
- It is a keyed permutation
- It is indistinguishable (to a polynomial distinguisher D) from a permutation f chosen at random from all permutations mapping $\{0,1\}^{n}$ to $\{0,1\}^{n}$.
-2^{n} possible values for F_{k}
- (2n)! possible values for a random permutation
- It is known how to construct PRPs from PRFs

Block ciphers

- A block cipher is a function $F_{k}(x)$ with a key k and an $|m|$ bit input x, which has an $|m|$ bit output.
- $F_{k}(x)$ is a keyed permutation
- When analyzing security we assume it to be a PRP (PseudoRandom Permutation)
- How can we encrypt plaintexts longer than |m|?
- Different modes of operation were designed for this task. - Discussed last week.

Design of Block Ciphers

- More an art/engineering challenge than science. Based on experience and public scrutiny.
- Based on combining together simple building blocks, which support the following principles:
- "Diffusion" (bit shuffling): each intermediate/output bit affected by many input bits
- "Confusion": avoid structural relationships (and in particular, linear relationships) between bits
- Cascaded (round) design: the encryption algorithm is composed of iterative applications of a simple round

Confusion-Diffusion and Substitution-Permutation Networks

- Construct a PRP for a large block using PRPs for small blocks
- Divide the input to small parts, and apply rounds:
- Feed the parts through PRPs ("confusion")
- Mix the parts ("diffusion")
- Repeat
- Why both confusion and diffusion are necessary?
- Design musts: Avalanche effect. Using reversible s-boxes.

Fig ins - Eubstituticn-Fermutation Metwork with the Healanche Charworistir

AES (Advanced Encryption Standard)

- Design initiated in 1997 by NIST
- Goals: improve security and software efficiency of DES
- 15 submissions, several rounds of public analysis
- The winning algorithm: Rijndael
- Input block length: 128 bits
- Key length: 128, 192 or 256 bits
- Multiple rounds (10, 12 or 14), but does not use a Feistel network

Rijndael animation

Reversible s-boxes

- Substitution-Permutation networks must use reversible s-boxes
- Allow for easy decryption
- However, we want the block cipher to be "as random as possible"
- s-boxes need to have some structure to be reversible
- Better use non-invertible s-boxes
- Enter Feistel networks
- A round-based block-cipher which uses s-boxes which are not necessarily reversible
- Namely, building an invertible function (permutation) from a non-invertible function.

Feistel Networks

- Encryption:
- Input: $\mathrm{P}=\mathrm{L}_{\mathrm{i}-1}\left|\mathrm{R}_{\mathrm{i}-1} \cdot\right| \mathrm{L}_{\mathrm{i}-1}\left|=\left|\mathrm{R}_{\mathrm{i}-1}\right|\right.$
$-L_{i}=R_{i-1}$
$-R_{i}=L_{i-1} \oplus F\left(K_{i}, R_{i-1}\right)$
- Decryption?
- No matter which function is used as F, we obtain a permutation (i.e., F is reversible even if f is not).
- The same code/circuit, with keys in reverse order, can be used for decryption.
- Theoretical result [LubRac]: If f is
 a pseudo-random function then a 4 rounds Feistel network gives a pseudo-random permutation

DES (Data Encryption Standard)

- A Feistel network encryption algorithm:
- How many rounds?
- How are the round keys generated?
- What is F ?
- DES (Data Encryption Standard)
- Designed by IBM and the NSA, 1977.
- 64 bit input and output
- 56 bit key
- 16 round Feistel network
- Each round key is a 48 bit subset of the key
- Throughput \approx software: $10 \mathrm{Mb} / \mathrm{sec}$, hardware: $1 \mathrm{~Gb} / \mathrm{sec}$ (in 1991!).

Security of DES

- Criticized for unpublished design decisions (designers did not want to disclose differential cryptanalysis).
- Very secure - the best attack in practice is brute force - 2006: $\$ 1$ million search machine: 30 seconds
- cost per key: less than \$1
- 2006 : 1000 PCs at night: 1 month
- Cost per key: essentially 0 (+ some patience)
- Some theoretical attacks were discovered in the 90s:
- Differential cryptanalysis
- Linear cryptanalysis: requires about 2^{40} known plaintexts
- The use of DES is not recommend since 2004 , but 3DES is still recommended for use.

Iterated ciphers

- Suppose that E_{k} is a good cipher, with a key of length k bits and plaintext/ciphertext of length n.
- The best attack on E_{k} is a brute force attack with has $O(1)$ plaintext/ciphertext pairs, and goes over all 2^{k} possible keys searching for the one which results in these pairs.
- New technological advances make it possible to run this brute force exhaustive search attack. (Or, I'm willing to invest more in order to get more security.) What shall we do?
- Design a new cipher with a longer key.
- Encrypt messages using two keys $\mathrm{k}_{1}, \mathrm{k}_{2}$, and the encryption function $E_{k 2}\left(E_{k 1}()\right)$. Hoping that the best brute force attack would take $\left(2^{\mathrm{k}}\right)^{2}=2^{2 \mathrm{k}}$ time.

Iterated ciphers - what can go wrong?

- If encryption is closed under composition, namely for all k_{1}, k_{2} there is a k_{3} such that $E_{k 2}\left(E_{k 1}()\right)=E_{k 3}()$, then we gain nothing.
- Could just exhaustively search for k_{3}, instead of separately searching for k_{1} and k_{2}.
- Substitution ciphers definitely have this property (in fact, they are a permutation group and therefore closed under composition).
- It was suspected that DES is a group under composition. This assumption was refuted only in 1992.

Iterated Ciphers - Double DES

- DES is out of date due to brute force attacks on its short key (56 bits)
- Why not apply DES twice with two keys?
- Double DES: DES ${ }_{k 1, k 2}=E_{k 2}\left(E_{k 1}(m)\right)$
- Key length: 112 bits

- But, double DES is susceptible to a meet-in-the-middle attack, requiring $\approx 2^{56}$ operations and storage.
- Compared to brute a force attack, requiring 2^{112} operations and $\mathrm{O}(1)$ storage.

Meet-in-the-middle attack

- Meet-in-the-middle attack
$-\mathrm{C}=\mathrm{E}_{\mathrm{k} 2}\left(\mathrm{E}_{\mathrm{k} 1}(\mathrm{~m})\right)$
$-D_{k 2}(c)=E_{k 1}(m)$
- The attack:
- Input: (m,c) for which $c=E_{k 2}\left(\mathrm{E}_{\mathrm{k} 1}(m)\right)$
- For every possible value of k_{1}, generate and store $E_{k 1}(m)$.
- For every possible value of k_{2}, generate and store $D_{k 2}(c)$.
- Match k_{1} and k_{2} for which $E_{k 1}(m)=D_{k 2}(c)$.
- Might obtain several options for $\left(k_{1}, k_{2}\right)$. Check them or repeat the process again with a new (m, c) pair (see next slide)
- The attack is applicable to any iterated cipher. Running time and memory are $\mathrm{O}\left(2^{|\mathrm{k}|}\right)$, where $|\mathrm{k}|$ is the key size.

Meet-in-the-middle attack: how many pairs to check?

- The plaintext and the ciphertext are 64 bits long
- The key is 56 bits long
- Suppose that we are given one plaintext-ciphertext pair (m,c)
- The attack looks for $\mathrm{k} 1, \mathrm{k} 2$, such that $\mathrm{D}_{\mathrm{k} 2}(\mathrm{c})=\mathrm{E}_{\mathrm{k} 1}(\mathrm{~m})$
- The correct values of $\mathrm{k} 1, \mathrm{k} 2$ satisfy this equality
- There are 2^{112} (actually $2^{112}-1$) other values for k_{1}, k_{2}.
- Each one of these satisfies the equalities with probability 2^{-64}
- We therefore expect to have $2^{112-64}=2^{48}$ candidates for $\mathrm{k}_{1}, \mathrm{k}_{2}$.
- Suppose that we are given two pairs (m,c), (m', c')
- The correct values of $\mathrm{k} 1, \mathrm{k} 2$ satisfy both equalities
- There are 2^{112} (actually 2^{112-1}) other values for $\mathrm{k}_{1}, \mathrm{k}_{2}$.
- Each one of these satisfies the equalities with probability 2^{-128}
- We therefore expect to have $2^{112-128}<1$ false candidates for k_{1}, k_{2}.

Triple DES

- SDES $_{k 1, k 2, k 3}=E_{k 3}\left(D_{k 2}\left(E_{k 1}(m)\right)\right.$
- Two-key-3DES ${ }_{k 1, k 2}=E_{k 1}\left(D_{k 2}\left(E_{k 1}(m)\right)\right.$
- Why use Enc(Dec(Enc())) ?
- Backward compatibility: setting $\mathrm{k}_{1}=\mathrm{k}_{2}$ is compatible with single key DES
- Two-key-3DES (key length is only 112 bits)
- There is an attack which requires 2^{56} work and memory, but needs also 2^{56} encryptions of chosen plaintexts. Therefore not practical.
- Without chosen plaintext, best attack needs 2^{112} work and memory.
- Why not use 3DES ? There is a meet-in-the-middle attack against three keys with 2^{112} operations
- 3DES is widely used. Less efficient than DES.

