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Classical symmetric ciphers

• Alice and Bob share a private key k.
• System is secure as long as k is secret.
• Major problem: generating and distributing k.

Alice Bob

k k
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Diffie and Hellman: “New Directions in 
Cryptography”, 1976.

• “We stand today on the brink of a revolution in 
cryptography. The development of cheap digital 
hardware has freed it from the design limitations of 
mechanical computing…
…such applications create a need for new types of 
cryptographic systems which minimize the necessity of 
secure key distribution…
…theoretical developments in information theory and 
computer science show promise of providing provably 
secure cryptosystems, changing this ancient art into a 
science.”
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Diffie-Hellman

• Came up with the idea of public key cryptography

Alice Bob

public keyBob secret keyBob

Everyone can learn Bob’s public key and encrypt messages to Bob. 
Only Bob knows the decryption key and can decrypt. 

Key distribution is greatly simplified. 
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Plan

• Basic number theory
– Divisors, modular arithmetic
– The GCD algorithm
– Groups

• References:
– Many books on number theory
– Almost all books on cryptography
– Cormen, Leiserson, Rivest, (Stein), “Introduction to 

Algorithms”,  chapter on Number-Theoretic Algorithms.
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Divisors, prime numbers

• We work over the integers
• A non-zero integer b divides an integer a if there exists 

an integer c s.t. a=c·b.
– Denoted as b|a
– I.e. b divides a with no remainder 

• Examples
– Trivial divisors: 1|a,  a|a
– Each of {1,2,3,4,6,8,12,24} divides 24
– 5 does not divide 24

• Prime numbers
– An integer a is prime if it is only divisible by 1 and by itself.
– 23 is prime, 24 is not.
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Modular Arithmetic

• Modular operator:
– a mod b,  (or a%b) is the remainder of a when divided by b
– I.e., the smallest r ≥ 0 s.t. ∃ integer q for which a = qb+r.
– (Thm: there is a single choice for such q,r)

– Examples
• 12 mod 5 = 2

• 10 mod 5 = 0

• -5 mod 5 = 0

• -1 mod 5 = 4
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Modular congruency

• a is congruent to b modulo n (a ≡ b mod n) if 
– (a-b) = 0 mod n
– Namely, n divides a-b
– In other words, (a mod n) = (b mod n)

• E.g.,
– 23 ≡ 12 mod 11
– 4 ≡ -1 mod 5

• There are n equivalence classes modulo n
– [3]7 = {…,-11,-4,3,10,17,…}
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Greatest Common Divisor (GCD)

• d is a common divisor of a and b, if d|a and d|b. 
• gcd(a,b) (Greatest Common Divisor), is the largest 

integer that divides both a and b. (a,b >= 0)
– gcd(a,b) = max k s.t. k|a and k|b.

• Examples:
– gcd(30,24) = 6
– gcd(30,23) = 1

• If gcd(a,b)=1 then a and b are denoted relatively prime. 
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Facts about the GCD

• gcd(a,b) = gcd(b, a mod b)    (interesting when a>b)
• Since

– If c|a and c|b then c|(a mod b)
– If c|b and c|(a mod b) then c|a

• If a mod b = 0, then gcd(a,b)=b.

• Therefore, 
gcd(19,8) = 

gcd(8, 3) =  

gcd(3,2) =  

gcd(2,1) = 1

gcd(20,8) =

gcd(8, 4) = 4 

(e.g., a=33, b=15)
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Euclid’s algorithm

Input: a>b>0
Output: gcd(a,b)
Algorithm:

1. if (a mod b) = 0 return (b)
2. else return( gcd(b, a mod b) )

Complexity: 
– O(log a) rounds
– Each round requires O(log2 a) bit operations
– Actually, the total overhead can be shown to be O(log2 a)
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The extended gcd algorithm

Finding s, t such that gcd(a,b) = a⋅ s + b ⋅ t

Extended-gcd(a,b)  /* output is (gcd(a,b), s, t)

1. If (a mod b=0) then return(b,0,1)

2. (d’,s’,t’) = Extended-gcd(b, a mod b)

3. (d,s,t) = (d’, t’, s’- a/b·t’)

4. return(d,s,t)

Note that the overhead is as in the basic GCD algorithm
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• Extended gcd algorithm
– Given a,b finds s,t such that gcd(a,b) = a⋅s + b⋅t
– In particular, if p is prime than gcd(a,p)=1, and therefore 

a⋅s+p⋅t=1. 
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• Extended gcd algorithm
– Given a,b finds s,t such that gcd(a,b) = a⋅s + b⋅t
– In particular, if p is prime than gcd(a,p)=1, and therefore 

a⋅s+p⋅t=1. This implies that (a⋅s ≡ 1 mod p)

• THM: There is no integer smaller than gcd(a,b) which 
can be represented as a linear combination of a,b.
– For example, a=12, b=8.
– 4= 1⋅12 - 1⋅8
– There are no s,t for which 2=s⋅12 + t⋅8

• Therefore if we find s,t such that as+tb=1, then we 
know  that gcd(a,b)=1
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Groups

• Definition: a set G with a binary operation °:G×G→G is 
called a group if:
– (closure) ∀ a,b ∈ G, it holds that a° b ∈ G. 
– (associativity) ∀a,b,c ∈ G, (a° b)° c = a° (b° c).
– (identity element) ∃ e ∈ G, s.t.∀ a ∈ G it holds that a° e =a.
– (inverse element) ∀ a ∈ G ∃ a-1∈ G, s.t. a ° a-1 = e.

• A group is Abelian (commutative) if ∀ a,b ∈ G, it holds 
that a° b = b° a.

• Examples:
– Integers under addition 

• (Z,+) = {…,-3,-2,-1,0,1,2,3,…}
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More examples of groups

• Addition modulo N
– (G,° )  =  ({0,1,2,…,N-1}, +)

• Zp
* Multiplication modulo a prime number p

– (G,° )  =  ({1,2,…,p-1}, ×)
– E.g., Z7

* = ( {1,2,3,4,5,6} , ×)

• Trivial: closure  (the result of the multiplication is never divisible 
by p), associativity, existence of identity element.

• The extended GCD algorithm shows that an inverse always 
exists:

– s·a+t·p = 1    ⇒ s·a = 1-t·p ⇒ s·a ≡1 mod p
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More examples of groups

• ZN
*  Multiplication modulo a composite number N

– (G,° )  =  ({a s.t. 1≤ a≤ N-1 and gcd(a,N)=1}, ×)
– E.g., Z10

* = ( {1,3,7,9}, ×)

– Closure: 
• s·a+t·N = 1

• s’·b+t’·N = 1

• ss’·(ab)+(sat’+s’bt+ tt’N)·N = 1

• Therefore 1=gcd(ab,N).

– Associativity: trivial
– Existence of identity element: 1. 
– Inverse element: as in Zp

*
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Subgroups

• Let (G,° ) be a group. 
– (H,° ) is a subgroup of G if

• (H,° ) is a group

• H ⊆ G 

– For example, H = ( {1,2,4}, ×) is a subgroup of Z7
*.

• Lagrange’s theorem:
If (G,° ) is finite and (H,° ) is a subgroup of (G,° ), then 
|H| divides |G|

In our example: 3|6.
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Cyclic Groups

• Exponentiation is repeated application of °
– a3 = a° a° a.
– a0 = 1.
– a-x = (a-1)x

• A group G is cyclic if there exists a generator g, s.t.          
∀ a∈G, ∃ i s.t. gi=a. 
– I.e., G= <g> = {1, g, g2, g3, …} 
– For example Z7

* = <3> = {1,3,2,6,4,5}
• Not all a∈G are generators of G, but they all generate a 

subgroup of G.
– E.g. 2 is not a generator of Z7

* 

• The order of a group element a is the smallest j>0 s.t. a j=1
• Lagrange’s theorem ⇒ for x∈Zp

*,   ord(x) | p-1.
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Fermat’s theorem

• Corollary of Lagrange’s theorem: if (G,° ) is a finite 
group, then ∀a∈G, a|G|=1. 

• Corollary (Fermat’s theorem): ∀ a∈ Zp
*,  ap-1 =1 mod p. 

E.g., for all ∀a∈Z7
*, a6=1, a7=a.

• Computing inverses:
• Given a∈G, how to compute a-1?

– Fermat’s theorem: a-1 = a|G|-1 (= ap-2 in Zp
* )

– Or, using the extended gcd algorithm (for Zp* or ZN*):
• gcd(a,p) = 1

• s·a + t·p = 1  ⇒ s·a = -t·p + 1 ⇒ s is a-1 !!

– Which is more efficient?
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Computing in Zp
*

• P is a huge prime (1024 bits)
• Easy tasks (measured in bit operations):

– Adding in O(log p)  (namely, linear n the length of p)
– Multiplying in O(log2 p)   (and even in O(log1.7 p) )
– Inverting (a to a-1) in O(log2 p) 
– Exponentiations:

• xr mod p in O(log r · log2 p), using repeated squaring
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Groups we will use

• Zp
* Multiplication modulo a prime number p

– (G,° )  =  ({1,2,…,p-1}, ×)
– E.g., Z7

* = ( {1,2,3,4,5,6} , ×)

• ZN
*  Multiplication modulo a composite number N

– (G,° )  =  ({a s.t. 1≤ a≤ N-1 and gcd(a,N)=1}, ×)
– E.g., Z10

* = ( {1,3,7,9}, ×)
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Euler’s phi function

• Lagrange’s Theorem: ∀a in a finite group G, a|G|=1.
• Euler’s phi function (aka, Euler’s totient function), 

– φ(n) = number of elements in Z*
n    (i.e. | {x | gcd(x,n)=1, 1≤x≤n} |

– φ(p) = p-1 for a prime p.
– n=∏i=1..k pi

e(i) ⇒ φ(n) = n·∏i=1..k (1-1/pi)
– φ(p2) = p(p-1) for a prime p. 
– n=p·q ⇒ φ(n) =(p-1)(q-1) 

• Corollary: For Zn
* (n=p·q),    |Zn

*|= φ(n) =(p-1)(q-1).
• ∀a∈ Zn

* it holds that aφ(n) =1 mod n
– For Zp

* (prime p),   ap-1 =1 mod p    (Fermat’s theorem).
– For Zn

* (n=p·q),   a(p-1)(q-1) =1 mod n
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Quadratic Residues

• The square root of x∈Zp
* is y∈Zp

* s.t. y2=x mod p.
• Examples: sqrt(2) mod 7 = 3, sqrt(3) mod 7 doesn’t exist.

• How many square roots does x∈Zp
* have?

– If a and b are square roots of x, then x=a2=b2 mod p.
Therefore (a-b)(a+b)=0 mod p. Therefore either a=b or a= -b modulo p.

– Therefore x has either 2 or 0 square roots, and is denoted as a 
Quadratic Residue (QR) or Non Quadratic Residue (NQR), respectively. 
There are exactly (p-1)/2 QRs.

• x(p-1)/2 is either 1 or -1 in Zp
* .  (indeed, (x(p-1)/2)2  is always 1) 

• Euler’s theorem: x∈Zp
* is a QR iff x(p-1)/2 = 1 mod p.

• Legendre’s symbol:

• Legendre’s symbol can be efficiently computed as x(p-1)/2 mod p.
• The quadratic residues form a subgroup of order (p-1)/2   (=q)

px

Zx

Zx

p

x
p

p

 mod 0

in  NQRan  is 

in  QR a is 

0

   1

1
*

*

=







−=










25

page 25December 16, 2008 Introduction to Cryptography, Benny Pinkas

Does the DDH assumption hold in Zp
*?

• The DDH assumption does not hold in Zp
*

– Assume that both x=ga and y=gb are QRs in Zp
*. 

– Then gab is also a QR, whereas a random gc is an NQR 
with probability ½. 

• Solution:  (work in a subgroup of prime order)
– Set p=2q+1, where q is prime.
– φ(Zp

*) = p-1 = 2q. Therefore Zp
* has a subgroup H of prime 

order q.
– Let g be a generator of H  (for example,  g is a QR in Zp

*).
– The DDH assumption is believed to hold in H. (The 

Legendre symbol is always 1.)


