
1

page 1December 23, 2008 Introduction to Cryptography, Benny Pinkas

Introduction to Cryptography

Lecture 8

Benny Pinkas

2

page 2December 23, 2008 Introduction to Cryptography, Benny Pinkas

Groups we will use

• Zp
* Multiplication modulo a prime number p

– (G,°) = ({1,2,…,p-1}, ×)
– E.g., Z7

* = ({1,2,3,4,5,6} , ×)

• ZN
* Multiplication modulo a composite number N

– (G,°) = ({a s.t. 1≤ a≤ N-1 and gcd(a,N)=1}, ×)
– E.g., Z10

* = ({1,3,7,9}, ×)

3

page 3December 23, 2008 Introduction to Cryptography, Benny Pinkas

Cyclic Groups

• Exponentiation is repeated application of °
– a3 = a° a° a.
– a0 = 1.
– a-x = (a-1)x

• A group G is cyclic if there exists a generator g, s.t.
∀ a∈G, ∃ i s.t. gi=a.
– I.e., G= <g> = {1, g, g2, g3, …}
– For example Z7

* = <3> = {1,3,2,6,4,5}
• Not all a∈G are generators of G, but they all generate a

subgroup of G.
– E.g. 2 is not a generator of Z7

*

• The order of a group element a is the smallest j>0 s.t. a j=1
• Lagrange’s theorem ⇒ for x∈Zp

*, ord(x) | p-1.

4

page 4December 23, 2008 Introduction to Cryptography, Benny Pinkas

Computing in Zp
*

• P is a huge prime (1024 bits)
• Easy tasks (measured in bit operations):

– Adding in O(log p) (namely, linear n the length of p)
– Multiplying in O(log2 p) (and even in O(log1.7 p))
– Inverting (a to a-1) in O(log2 p)
– Exponentiations:

• xr mod p in O(log r · log2 p), using repeated squaring

5

page 5December 23, 2008 Introduction to Cryptography, Benny Pinkas

Euler’s phi function

• Lagrange’s Theorem: ∀a in a finite group G, a|G|=1.
• Euler’s phi function (aka, Euler’s totient function),

– φ(n) = number of elements in Z*
n (i.e. | {x | gcd(x,n)=1, 1≤x≤n} |

– φ(p) = p-1 for a prime p.
– n=∏i=1..k pi

e(i) ⇒ φ(n) = n·∏i=1..k (1-1/pi)
– φ(p2) = p(p-1) for a prime p.
– n=p·q ⇒ φ(n) =(p-1)(q-1)

• Corollary: For Zn
* (n=p·q), |Zn

*|= φ(n) =(p-1)(q-1).
• ∀a∈ Zn

* it holds that aφ(n) =1 mod n
– For Zp

* (prime p), ap-1 =1 mod p (Fermat’s theorem).
– For Zn

* (n=p·q), a(p-1)(q-1) =1 mod n

6

page 6December 23, 2008 Introduction to Cryptography, Benny Pinkas

Finding prime numbers

7

page 7December 23, 2008 Introduction to Cryptography, Benny Pinkas

Finding prime numbers

• Prime number theorem: #{primes ≤ x} ≈ x / lnx as x→∞

• How can we find a random k-bit prime?
– Choose x at random in {2k,…,2k+1-1}

• (How many numbers in that range are prime?

About 2k+1/ ln2k+1 - 2k/ ln2k numbers, i.e. a 1/ ln(2k) fraction.)

– Test if x is prime
• (more on this later in the course)

• The probability of success is ≈ 1/ln(2k) = O(1/k).
• The expected number of trials is O(k).

8

page 8December 23, 2008 Introduction to Cryptography, Benny Pinkas

Finding generators

• How can we find a generator of Zp
*?

• Pick a random number a∈ [1,p-1], check if is a generator
– Naively, check whether ∀ 1≤i≤p-2 ai ≠ 1 �
– But we know that if ai=1 mod p then i | p-1.
– Therefore need to check only i for which i | p-1.

• Easy if we know the factorization of (p-1). In that case
– For all a∈Zp

*, the order of a divides (p-1)
– For every integer divisor b of (p-1), check if ab=1 mod p.
– If none of these checks succeeds, then a is a generator,

since a is a generator iff ord(a)=p-1.

9

page 9December 23, 2008 Introduction to Cryptography, Benny Pinkas

Finding prime numbers of the right form

• How can we know the factorization of p-1?
• Easy, for example, if p=2q+1, and q is prime.
• How can we find a k-bit prime of this form?

1. Search for a prime number q of length k-1 bits. (Will be
successful after about O(k) attempts.)

2. Check if 2q+1 is prime (we will see how to do this later in the
course).

3. If not, go to step 1.

10

page 10December 23, 2008 Introduction to Cryptography, Benny Pinkas

Hard problems in cyclic groups

A hard problem can be useful for constructing
cryptographic systems, if we can show that breaking
the system is equivalent to solving this problem.

11

page 11December 23, 2008 Introduction to Cryptography, Benny Pinkas

The Discrete Logarithm

• Let G be a cyclic group of order q, with a generator g.
– ∀h∈G, ∃ x∈[1,…,q], such that gx=h.
– This x is called the discrete logarithm of h to the base g.

– logg h = x.
– logg1 = 0, and logg(h1⋅ h2) = logg(h1)+ logg(h2) mod q.

12

page 12December 23, 2008 Introduction to Cryptography, Benny Pinkas

The Discrete Logarithm Problem and Assumption

• The discrete log problem
– Choose G,g at random (from a certain family G of groups),

where G is a cyclic group and g is a generator
– Choose a random element h∈ G
– Give the adversary the input (G,|G|,g,h)
– The adversary succeeds if it outputs loggh

• The discrete log assumption
– There exists a family G of groups for which the discrete log

problem is hard
• Namely, the adversary has negligible success probability.

13

page 13December 23, 2008 Introduction to Cryptography, Benny Pinkas

Cyclic groups of prime order

• (The order of a group G is the number of elements in
the group)

• Zp* has order p-1 (and p-1 is even and therefore non-
prime).

• We will need to work in groups of prime order.

• If p=2q+1, and q is prime, then Zp* has a subgroup of
order q (namely, a subgroup of prime order).

14

page 14December 23, 2008 Introduction to Cryptography, Benny Pinkas

Hard problems in cyclic groups of prime order

• The following problems are believed to be hard in subgroups of
prime order of Zp

* (if the subgroup is large enough)

– The discrete log problem

– The Diffie-Hellman problem: The input contains g and x,y∈G, such
that x=ga and y=gb (where a,b where chosen at random). The task is
to find z=ga·b.

– The Decisional Diffie-Hellman problem: The input contains x,y∈G,
such that x=ga and y=gb (and a,b were chosen at random); and a pair (z,z’)
where one of (z,z’) is ga·b and the other is gc (for a random c). The task
is to tell which of (z,z’) is ga·b.

• Solving DDH ≤ solving DH ≤ solving DL
– All believed to be hard if the size of the subgroup > 2700.

15

page 15December 23, 2008 Introduction to Cryptography, Benny Pinkas

Classical symmetric ciphers

• Alice and Bob share a private key k.
• System is secure as long as k is secret.
• Major problem: generating and distributing k.

Alice Bob

k k

16

page 16December 23, 2008 Introduction to Cryptography, Benny Pinkas

Diffie and Hellman: “New Directions in
Cryptography”, 1976.

• “We stand today on the brink of a revolution in
cryptography. The development of cheap digital
hardware has freed it from the design limitations of
mechanical computing…
…such applications create a need for new types of
cryptographic systems which minimize the necessity of
secure key distribution…
…theoretical developments in information theory and
computer science show promise of providing provably
secure cryptosystems, changing this ancient art into a
science.”

17

page 17December 23, 2008 Introduction to Cryptography, Benny Pinkas

Diffie-Hellman

• Came up with the idea of public key cryptography

• Diffie and Hellman did not have an implementation for a
public key encryption system

• Suggested a method for key exchange over insecure
communication lines, that is still in use today.

Alice Bob

public keyBob secret keyBob

Everyone can learn Bob’s public key and encrypt messages to Bob.
Only Bob knows the decryption key and can decrypt.

Key distribution is greatly simplified.

18

page 18December 23, 2008 Introduction to Cryptography, Benny Pinkas

Public Key-Exchange

• Goal: Two parties who do not share any secret
information, perform a protocol and derive the same
shared key.

• No eavesdropper can obtain the new shared key (if it
has limited computational resources).

• The parties can therefore safely use the key as an
encryption key.

19

page 19December 23, 2008 Introduction to Cryptography, Benny Pinkas

The Diffie-Hellman Key Exchange Protocol

• Alice:
– picks a random a∈[1,q].
– Sends ga mod p to Bob.

– Computes k=(gb)a mod p

• Bob:
– picks a random b∈[1,q].
– Sends gb mod p to Bob.

– Computes k=(ga)b mod p

• Public parameters: a group where the DDH assumption
holds. For example, a subgroup H⊂ Zp* (where |p|= 768
or 1024, p=2q+1) of order q, and a generator g of H⊂ Zp*.

• K = gab is used as a shared key between Alice and Bob.
• DDH assumption ⇒ K is indistinguishable from a random key

20

page 20December 23, 2008 Introduction to Cryptography, Benny Pinkas

Diffie-Hellman: security

• A (passive) adversary
– Knows Zp

*, g
– Sees ga, gb

– Wants to compute gab, or at least learn something about it
• Recall the Decisional Diffie-Hellman problem:

– Given random x,y∈Zp
*, such that x=ga and y=gb; and a pair

(gab,gc) (in random order, for a random c), it is hard to tell
which is gab.

– An adversary that distinguishes the key gab generated in a
DH key exchange from random, can also break the DDH.

– Note: it is insufficient to require that the adversary cannot
compute gab.

21

page 21December 23, 2008 Introduction to Cryptography, Benny Pinkas

Diffie-Hellman key exchange: usage

• The DH key exchange can be used in any group in
which the Decisional Diffie-Hellman (DDH) assumption
is believed to hold.

• Currently, Zp* and elliptic curve groups.

• Common usage:
– Overhead: 1-2 exponentiations
– Usually,

• A DH key exchange for generating a master key

• Master key used to encrypt session keys

• Session key is used to encrypt traffic with a symmetric
cryptosystem

22

page 22December 23, 2008 Introduction to Cryptography, Benny Pinkas

• Why don’t we implement Diffie-Hellman in Zp*
(but rather in a subgroup H⊂ Zp*, for p=2q+1, of order
q, and a generator g of H⊂ Zp*).

• For the system to be secure, we need that the DDH
assumption holds.

• This assumption does not hold in Zp* (see discussion
below)

23

page 23December 23, 2008 Introduction to Cryptography, Benny Pinkas

Quadratic Residues

• The square root of x∈Zp
* is y∈Zp

* s.t. y2=x mod p.

• Examples: sqrt(2) mod 7 = 3, sqrt(3) mod 7 doesn’t exist.

• How many square roots does x∈Zp
* have?

– If a and b are square roots of x, then x=a2=b2 mod p.
– Therefore for any two square roots of any number x it holds

that (a-b)(a+b)=0 mod p.
– Therefore either a=b or a= -b modulo p.
– Therefore x has either 2 or 0 square roots, and is denoted

as a Quadratic Residue (QR) or Non Quadratic Residue
(NQR), respectively.

– There are exactly (p-1)/2 QRs.

24

page 24December 23, 2008 Introduction to Cryptography, Benny Pinkas

Quadratic Residues

• x(p-1)/2 is either 1 or -1 in Zp
* (since (x(p-1)/2)2 is always 1).

• Euler’s theorem: x∈Zp
* is a QR iff x(p-1)/2 = 1 mod p.

• Legendre’s symbol:

• Legendre’s symbol can be efficiently computed as x(p-1)/2 mod
p.

• Another way to look at this: let g be a generator of Zp
*. Then

every x can be written as x=gi mod p. It holds that x is a QR iff
i is even.

• The quadratic residues form a subgroup of order (p-1)/2 (=q)

px

Zx

Zx

p

x
p

p

 mod 0

in NQRan is

in QR a is

0

 1

1
*

*

=







−=








25

page 25December 23, 2008 Introduction to Cryptography, Benny Pinkas

Does the DDH assumption hold in Zp
*?

• The DDH assumption does not hold in Zp
*

– Assume that both x=ga and y=gb are QRs in Zp
*.

– Then gab is also a QR, whereas a random gc is an NQR
with probability ½.

• Solution: (work in a subgroup of prime order)
– Set p=2q+1, where q is prime.
– φ(Zp

*) = p-1 = 2q. Therefore Zp
* has a subgroup H of prime

order q.
– Let g be a generator of H (for example, g is a QR in Zp

*).
– The DDH assumption is believed to hold in H. (The

Legendre symbol is always 1.)

26

page 26December 23, 2008 Introduction to Cryptography, Benny Pinkas

An active attack against the Diffie-Hellman Key
Exchange Protocol

• An active adversary Eve.
• Can read and change the communication between

Alice and Bob.
• …As if Alice and Bob communicate via Eve.

Alice BobEve

27

page 27December 23, 2008 Introduction to Cryptography, Benny Pinkas

Man–in-the-Middle: an active attack against the
Diffie-Hellman Key Exchange protocol

• Alice:
– picks a random a∈[1,q].
– Sends ga mod p to Bob.

– Computes k=(gd)a mod p

– Solution: ? (wireless usb)

• Bob:

Eve changes ga to gc

– picks a random b∈[1,q].
– Sends gb mod p to Alice.

– Computes k=(gc)b mod p

Eve changes gb to gd

Keys:
Alice Eve Bob

gad gad, gbc gbc

28

page 28December 23, 2008 Introduction to Cryptography, Benny Pinkas

Public key encryption

• Alice publishes a public key PKAlice.
• Alice has a secret key SKAlice.
• Anyone knowing PKAlice can encrypt messages using it.
• Message decryption is possible only if SKAlice is known.

• Compared to symmetric encryption:
– Easier key management: n users need n keys, rather than

O(n2) keys, to communicate securely.
• Compared to Diffie-Hellman key agreement:

– No need for an interactive key agreement protocol. (Think
about sending email…)

• Secure as long as we can trust the association of keys
with users.

29

page 29December 23, 2008 Introduction to Cryptography, Benny Pinkas

Public key encryption

• Must have different keys for encryption and decryption.

• Public key encryption cannot provide perfect secrecy:
– Suppose Epk() is an algorithm that encrypts m=0/1, and

uses r random bits in operation.
– An adversary is given Epk(m). It can compare it to all

possible 2r encryptions of 0…

• Efficiency is the main drawback of public key
encryption.

30

page 30December 23, 2008 Introduction to Cryptography, Benny Pinkas

Defining a public key encryption

• The definition must include the following algorithms;

• Key generation: KeyGen(1k)→(PK,SK) (where k is a
security parameter, e.g. k=1000).

• Encryption: C = EPK(m) (E might be a randomized
algorithm)

• Decryption: M= DSK(C)

31

page 31December 23, 2008 Introduction to Cryptography, Benny Pinkas

The El Gamal public key encryption system

• Public information (can be common to different public keys):
– A group in which the DDH assumption holds. Usually start with a

prime p=2q+1, and use H⊂Zp
* of order q. Define a generator g of H.

• Key generation: pick a random private key a in [1,|H|] (e.g.
0<a<q). Define the public key h=ga (h=ga mod p).

• Encryption of a message m∈ H⊂ Zp
*

– Pick a random 0 < r < q.
– The ciphertext is (gr, hr·m).

• Decryption of (s,t)
– Compute t /sa (m= hr·m / (gr)a)

Using public key alone

Using private key

32

page 32December 23, 2008 Introduction to Cryptography, Benny Pinkas

El Gamal and Diffie-Hellman

• ElGamal encryption is similar to DH key exchange
– DH key exchange: Adversary sees ga, gb. Cannot

distinguish the key gab from random.
– El Gamal:

• A fixed public key ga.

• Sender picks a random gr.

• Sender encrypts message using gar.

• El Gamal is like DH where
– The same ga is used for all communication
– There is no need to explicitly send this ga (it is already

known as the public key of Alice)

Known to the adversary

Used as a key

33

page 33December 23, 2008 Introduction to Cryptography, Benny Pinkas

The El Gamal public key encryption system

• Setting the public information
• A large prime p, and a generator g of H⊂Zp

* of order q.
– |p| = 756 or 1024 bits.
– p-1 must have a large prime factor (e.g. p=2q+1)

• Otherwise it is easy to solve discrete logs in Zp
* (relevant also

to DH key agreement)

• Needed for the DDH assumption to hold (Legendre’s symbol)

– g must be a generator of a large subgroup of Zp
*.

34

page 34December 23, 2008 Introduction to Cryptography, Benny Pinkas

The El Gamal public key encryption system

• Encoding the message:
– m must be in the subgroup H generated by g.

– If p=2q+1, and H is the subgroup of quadratic residues, we
can map each message m∈{1,…,(p-1)/2} to the value
m2 mod p, which is in H.

– Alternatively, encrypt m using (gr, H(hr)⊕ m). Decryption is
done by computing H((gr)a). (H is a hash function that
preserves the pseudo-randomness of hr.)

35

page 35December 23, 2008 Introduction to Cryptography, Benny Pinkas

The El Gamal public key encryption system

• Overhead:
– Encryption: two exponentiations; preprocessing possible.
– Decryption: one exponentiation.
– message expansion: m ⇒ (gr, hr·m).

• Randomized encryption
– Must use fresh randomness r for every message.
– Two different encryptions of the same message are

different! (provides semantic security)

