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Administrative Details

• Web page: 
http://pinkas.net/teaching/itc/2012/course.html

• Grade

– Exam 75%, homework 25%

• Email: benny@pinkas.net

• Goal: Learn the basics of modern cryptography

• Method: introductory, applied, precise.
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Bibliography

• Textbooks:

– Introduction to Modern Cryptography, by J. Katz and Y. 
Lindell.

– Cryptography Theory and Practice, Second (or third) 
edition by D. Stinson. (Also,  מדריך למידה בעברית של
!האוניברסיטה הפתוחה )
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• Optional reading:

– Handbook of Applied Cryptography, by A. Menezes, P. 
Van Oorschot, S. Vanstone. (Free!)

– Applied Cryptography, by B. Schneier.
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Probability Theory

• One of the perquisites of this course is the course 
“Introduction to probability”

– If you haven’t taken that course, it is your responsibility to 
learn the relevant material.

– You can read Luca Trevisan’s notes on discrete 
probability, available at 
http://www.cs.berkeley.edu/~luca/notes/notesprob.pdf

– Afterwards, you can also read the part on probability in 
Chapter 2 of the Handbook of Applied Cryptography, 
which is available at 
http://www.cacr.math.uwaterloo.ca/hac/about/chap2.pdf
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Course Outline

• Course Outline

– Data secrecy: encryption

• Symmetric encryption

• Asymmetric (public key) encryption

– Data Integrity: authentication, digital signatures.

– Required background in number theory

– Public key encryption

– Cryptographic protocols
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Encryption

Alice

Eve

Bob

•Two parties: Alice and Bob

•Reliable communication link

•Goal: send a message while hiding it from Eve (as if Alice and Bob were 

both in the same room)

•Examples:  military communication, Internet communication (HTTPS), 

wireless traffic (801.11, GSM, Bluetooth), disk encryption.



page 8October 30, 2012 Introduction to Cryptography, Benny Pinkas      

Secret key

Alice

Eve

Bob

• Alice/Bob must have some secret information that Eve 

does not know. Otherwise…

• In symmetric encryption, Alice and Bob share a secret 

key k, which they use for encrypting and decrypting the 

message.

k k
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Authentication / Signatures

Alice Bob

•Goal:

•Enable Bob to verify that Eve did not change messages sent by Alice

•Enable Bob to prove to others the origin of messages sent by Alice

• (We’ll discuss these issues in later classes)

Eve



Encryption + Authentication

• Ensure that no eavesdropping or tampering happen to

– Web traffic

– Wireless communication

– Protected files on disk
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Cryptography is a rigorous science

• To build a secure cryptographic tool

– Specify the threat model

– Propose a construction

– Prove that breaking the construction  means that the 
threat model is either impossible, or is equivalent to 
solving some problem which everyone believes to be hard. 
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Encryption

• Message space {m}   (e.g. {0,1}n)

• Key generation algorithm

• Encryption key k1, decryption key k2

• Encryption function E

• Decryption function D

• For every message m

– Dk2 ( Ek1 ( m ) ) = m

– I.e., the decryption of the encryption of m is m

• Symmetric encryption k = k1 = k2

Encryption (Ek1) Decryption (Dk2)
plaintext plaintextciphertext

Define the

encryption

system



Defining an Encryption Scheme

• Must specify the following three algorithms

– GEN

• key generation

– ENC

• Input: encryption key, plaintext

• Output: ciphertext

– DEC

• Input: decryption key, ciphertext

• Output: plaintext
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Security Goals

(1) No adversary can determine m

or, even better, 

(2) No adversary can determine any new info about m

• Suppose m = “attack on Sunday, at 17:15”.

• Is it secure if the adversary can only learn that 

– m = “attack on S**day, a* 17:**”

– m = “******   **  *u****** **  *****”

• Here, goal (1) is satisfied, but not goal (2)

• We will discuss this in more detail…



page 15October 30, 2012 Introduction to Cryptography, Benny Pinkas      

Adversarial Model

• To be on the safe side, assume that adversary knows 
the encryption and decryption algorithms E and D, and 
the message space.

• Kerckhoff’s Principle (1883)
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Adversarial Model

• To be on the safe side, assume that adversary knows 
the encryption and decryption algorithms E and D, and 
the message space.

• Kerckhoff’s Principle (1883)

– The only thing Eve does not know is the secret key k

– The design of the cryptosystem is public

– This is convenient

• Only a short key must be kept secret.

• If the key is revealed, replacing it is easier than replacing the 
entire cryptosystem.

• Supports standards: the standard describes the cryptosystem 
and any vendor can write its own implementation (e.g., SSL)
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Adversarial Model

• Keeping the design public is also crucial for security
• Allows public scrutiny of the design (Linus’ law: “given enough 

eyeballs, all bugs are shallow”)

• The cryptosystem can be examined by “ethical hackers”

• Being able to reuse the same cryptosystem in different 
applications enables to spend more time on investigating its 
security

• No need to take extra measures to prevent reverse 
engineering

• Focus on securing the key

• Examples
– Security through obscurity, Intel’s HDCP, GSM A5/1.  �

– DES, AES, SSL ☺
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Adversarial Power

• What does the adversary know or seen before?

• Types of attacks:

– Ciphertext only attack – ciphertext known to the adversary 
(eavesdropping)

– Known plaintext attack – plaintext and ciphertext are known 
to the adversary

– Chosen plaintext attack – the adversary can choose the 
plaintext and obtain its encryption (e.g. adverasry has 
access to the encryption system)

– Chosen ciphertext attack – the adversary can choose the 
ciphertext and obtain its decryption
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Adversarial Power

• What is the computational power of the adversary?

– Polynomial time?

– Unbounded computational power?

• We might assume restrictions on the adversary’s 
capabilities, but we cannot assume that it is using 
specific attacks or strategies.
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Breaking the Enigma

• German cipher in WW II

• Kerckhoff’s principle

• Known plaintext attack

• (somewhat) chosen plaintext attack
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Caesar Cipher

• A shift cipher

• Plaintext:    “ATTACK AT DAWN”

• Ciphertext: “DWWDFN DW GDZQ”

• Key: k ∈R {0,25}.    (In this example k=3)

• More formally:

– Key: k ∈R {0…25}, chosen at random. 

– Message space: English text   (i.e., {0...25} |m| )

– Algorithm: ciphertext letter = plaintext letter + k mod 26

• Follows Kerckhoff’s principle

– But not a good cipher

• A similar “cipher”:  ROT-13
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Brute Force Attacks

• Brute force attack: adversary tests all possible keys and 
checks which key decrypts the message
– Note that this assumes we can identify the correct 

plaintext among all plaintexts generated by the attack

• Caesar cipher: |key space| = 26

• We need a larger key space

• Usually, the key is a bit string chosen uniformly at 
random from {0,1}|k|.  Implying 2|k| equiprobable keys.

• How long should k be?

• The adversary should not be able to do 2|k| decryption 
trials
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Adversary’s computation power

• Theoretically
– Adversary can perform poly(|k|) computation

– Key space = 2|k|

• Practically
– |k| = 64 is too short for a key length

– |k| = 80 starts to be reasonable

– Why? (what can be done by 1000 computers in a year?)
• 255 = 220 (ops per second)

• x 220 (seconds in two weeks)

• x 25 ( ≈ fortnights  in a year) (might invest more than a year..)

• x 210 (computers in parallel – easy on the cloud)

• All this, assuming that the adversary cannot do better 
than a brute force attack
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Monoalphabetic Substitution cipher

A B C D E F G H I J K L M

Y A H P O G Z Q W B T S F

• Plaintext:    “ATTACK AT DAWN”

• Ciphertext: “YEEYHT YE PYDL”

• More formally:

– Plaintext space = ciphertext space = {0..25} |m| 

– Key space = 1-to-1 mappings of {0..25} (i.e., permutations)

– Encryption: map each letter according to the key

• Key space size?

N O P Q R S T U V W X Y Z

L R C V M U E K J D I X N
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Monoalphabetic Substitution cipher

A B C D E F G H I J K L M

Y A H P O G Z Q W B T S F

• Plaintext:    “ATTACK AT DAWN”

• Ciphertext: “YEEYHT YE PYDL”

• More formally:

– Plaintext space = ciphertext space = {0..25} |m| 

– Key space = 1-to-1 mappings of {0..25} (i.e., permutations)

– Encryption: map each letter according to the key

• | Key space | = 26!  ≈  4 x 1028  ≈  295.   (Large enough.)

• Still easy to break

N O P Q R S T U V W X Y Z

L R C V M U E K J D I X N
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Breaking the substitution cipher

• The plaintext has a lot of structure

– Known letter distribution in English (e.g. Pr(“e”) = 13%).

– Known distribution of pairs of letters (“th” vs. “jj”) 

– We can also use the fact that the mapping of plaintext 
letters to ciphertext letters is fixed
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Cryptanalysis of a substitution cipher

•QEFP FP QEB CFOPQ QBUQ

•QEFP FP QEB CFOPQ QBUQ

•TH      TH      T T  T

•THFP FP THB CFOPT TBUT

•THIS IS TH   I ST T  T

•THIS IS THB CIOST TBUT

•THIS IS THE  I ST TE T

•THIS IS THE FIRST TEXT
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The Vigenere cipher

• Plaintext space = ciphertext space = {0..25} |m| 

• Key space = strings of |k| letters {0..25}|K|

• Generate a pad by repeating the key until it is as long as the 
plaintext  (e.g., “SECRETSECRETSEC..”)

• Encryption algorithm: add the corresponding characters 
of the pad and the plaintext

– THIS IS THE PLAINTEXT TO BE ENCRYPTED

– SECR ET SEC RETSECRET SE CR ETSECRETSE

• |Key space| = 26|k|.    (k=17 implies |key space| ≈ 280)

• Each plaintext letter is mapped to |k| different letters
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Attacking the Vigenere cipher

• Known plaintext attack (or rather, known plaintext distribution)
– Guess the key length |k|

– Examine every |k|’th letter, this is a shift cipher
• THIS   IS  THE  PLAINTEXT  TO BE ENCRYPTED

• SECR  ET SEC  RETSECRET SE  CR ETSECRETS

– Attack time: (|k-1| + |k|) x time of attacking a shift cipher(1)

• Chosen plaintext attack:
– Use the plaintext “aaaaaaa…”

(1) How?
– |k-1| failed tests for key lengths 1,…,|k-1|. |k| tests covering all |k| letters of 

the key.

– Attacking the shift cipher: Assume known letter frequency (no known 
plaintext). Can check the difference of resulting histogram from the English 
letters histogram.
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Perfect Cipher

• What type of security would we like to achieve?

• In an “ideal” world, the message will be delivered in a 
magical way, out of the reach of the adversary
– We would like to achieve similar security

• “Given the ciphertext, the adversary has no idea what 
the plaintext is”
– Impossible since the adversary might have a-priori 

information

• A perfect cipher: 
– The ciphertext does not add information about the plaintext
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Probability distributions

• Definition: a cipher is perfect iff for all P,C
– Pr( plaintext = P | ciphertext = C ) = Pr( plaintext = P)

• Pr( plaintext = P | ciphertext = C )

• The probability is taken over the choices of the key, the 
plaintext, and the ciphertext.

– Key: Its probability distribution is usually uniform.

– Plaintext: has an arbitrary distribution

• Not necessarily uniform (Pr(“e”) > Pr(“j”)).

– Ciphertext: Its distribution is determined given the 
cryptosystem and the distributions of key and plaintext.

– A simplifying assumption: All plaintext and ciphertext 
values have positive probability.
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Perfect Cipher

• For a perfect cipher, it holds that given ciphertext C,

– Pr( plaintext = P | C ) = Pr( plaintext = P)

– i.e., knowledge of ciphertext does not change the a-priori 
distribution of the plaintext

– Probabilities taken over key space and plaintext space

– Does this hold for monoalphabetic substitution?
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Perfect Cipher

• Perfect secrecy is a property (which we would like 
cryptosystems to have)

• We will now show a specific cryptosystem that has this property

• One Time Pad (Vernam cipher): (for a one bit plaintext)

– Plaintext p ∈ {0,1}

– Key k ∈R {0,1}   (i.e. Pr(k=0) = Pr(k=1) = ½ )

– Ciphertext = p ⊕ k

– Is this a perfect cipher? What happens if we know a-priori 
that Pr(plaintext=1)=0.8 ?
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The one-time-pad is a perfect cipher

ciphertext = plaintext ⊕ k

Lemma: Pr( ciphertext = 0) = Pr( ciphertext = 1) = ½  

(regardless of the distribution of the plaintext)

Pr ( ciphertext = 0)

= Pr (plaintext ⊕ key = 0)

= Pr (key = plaintext ) 

= Pr (key=0)⋅Pr(plaintext=0) + Pr (key=1)⋅Pr(plaintext=1)

= ½ ⋅ Pr(plaintext=0) + ½ ⋅Pr(plaintext=1)

= ½ ⋅ ( Pr(plaintext=0) + Pr(plaintext=1) ) = ½
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The one-time-pad is a perfect cipher

ciphertext = plaintext ⊕ k

Pr(plaintext = 1 | ciphertext = 1)

= Pr(plaintext = 1  &  ciphertext = 1) / Pr(ciphertext = 1)

= Pr(plaintext = 1  &  ciphertext = 1) / ½

= Pr(ciphertext = 1 | plaintext = 1) · Pr(plaintext = 1) / ½

= Pr(key = 0) · Pr(plaintext = 1) / ½

= ½ · Pr(plaintext = 1) / ½

= Pr(plaintext = 1)

The perfect security property holds
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One-time-pad  (OTP) - the general case

• Plaintext = p1p2…pm∈ Σm  (e.g. Σ={0,1}, or Σ={A…Z})

• key = k1k2…km ∈R Σm

• Ciphertext = c1c2…cm,   ci = pi + ki mod |Σ|

• Essentially a shift cipher with a different key for every 
character, or a Vigenere cipher with |k|=|P| 

• Shannon [47,49]: 

– An OTP is a perfect cipher, unconditionally secure. ☺

– As long as the key is a random string, of the same length 
as the plaintext. �

– Cannot use

• Shorter key   (e.g., Vigenere cipher)

• A key which is not chosen uniformly at random
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Size of key space

• Theorem: For a perfect encryption scheme, the number 
of keys is at least the size of the message space 
(number of messages that have a non-zero probability).

• Proof:

– Consider ciphertext C.

– C must be a possible encryption of any plaintext m.

– But, for this we need a different key per message m.

• Corollary: Key length of one-time pad is optimal �



Keys which are not chosen at random

• If the key is not random, the OTP is insecure. 

• In particular, if text is used as the key, then the 
ciphertext can be easily broken.

• What about reusing the key two times or more?
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Perfect Ciphers

• A simple criteria for perfect ciphers.

• Claim: The cipher is perfect if, and only if,

∀ m1,m2∈M, ∀cipher c, 

Pr(Enc(m1)=c) = Pr(Enc(m2)=c).    (recitation)

• Idea: Regardless of the plaintext, the adversary sees 
the same distribution of ciphertexts.

• Note that the proof cannot assume that the cipher is the 
one-time-pad, but rather only that Pr( plaintext = P | 
ciphertext = C ) = Pr( plaintext = P)



page 40October 30, 2012 Introduction to Cryptography, Benny Pinkas      

What we’ve learned today

• Introduction

• Kerckhoff’s Principle

• Some classic ciphers

– Brute force attacks

– Required key length

– A large key does no guarantee security

• Perfect ciphers


