
page 1January 1, 2012 Introduction to Cryptography, Benny Pinkas

Introduction to Cryptography
Lecture 10

Digital signatures,

Public Key Infrastructure (PKI)

Benny Pinkas

page 2May 22, 2011 Introduction to Cryptography, Benny Pinkas

Non Repudiation

• Prevent signer from denying that it signed the message

• I.e., the receiver can prove to third parties that the
message was signed by the signer

• This is different than message authentication (MACs)

– There the receiver is assured that the message was sent
by the receiver and was not changed in transit

– But the receiver cannot prove this to other parties

• MACs: sender and receiver share a secret key K

• If R sees a message MACed with K, it knows that it could
have only been generated by S

• But if R shows the MAC to a third party, it cannot prove that
the MAC was generated by S and not by R

page 3May 22, 2011 Introduction to Cryptography, Benny Pinkas

Signing/verification process

Document M
signing

algorithm

Private signature key

Signature of M

Public verification key

verification

algorithm

valid / invalid

signer

verifier Signature

depends on M

page 4May 22, 2011 Introduction to Cryptography, Benny Pinkas

Message lengths

• A technical problem:
– |m| might be longer than |N|

– m might not be in the domain of f -1()

Solution “hash-and-sign” paradigm:

• Signing: First compute H(m), then compute the
signature f -1(H(M)). Where,
– The range of H() must be contained in the domain of f -1().

– H() must be collision intractable. I.e. it is hard to find (in
polynomial time) messages m, m’ s.t. H(m)=H(m’).

• Verification:
– Compute f(s). Compare to H(m).

• Using H() is also good for security reasons. See below.

page 5May 22, 2011 Introduction to Cryptography, Benny Pinkas

Security definitions for digital signatures

• Attacks against digital signatures

– Key only attack: the adversary knows only the verification
key

– Known signature attack: in addition, the adversary has
some message/signature pairs.

– Chosen message attack: the adversary can ask for
signatures of messages of its choice (e.g. attacking a
notary system).

(Seems even more reasonable than chosen message
attacks against encryption.)

page 6May 22, 2011 Introduction to Cryptography, Benny Pinkas

Security definitions for digital signatures

• Several levels of success for the adversary

– Existential forgery: the adversary succeeds in forging the
signature of one message.

– Selective forgery: the adversary succeeds in forging the
signature of one message of its choice.

– Universal forgery: the adversary can forge the signature of
any message.

– Total break: the adversary finds the private signature key.

• Different levels of security, against different attacks, are
required for different scenarios.

page 7May 22, 2011 Introduction to Cryptography, Benny Pinkas

Example: simple RSA based signatures

• Key generation: (as in RSA)

– Alice picks random p,q. Defines N=pq and finds e·d=1
mod (p-1)(q-1).

– Public verification key: (N,e)

– Private signature key: d

• Signing: Given m, Alice computes s=md mod N.

• (suppose that there is no hash function H())

• Verification: given m,s and public key (N,e).

– Compute m’ = se mod N.

– Output “valid” iff m’=m.

page 8May 22, 2011 Introduction to Cryptography, Benny Pinkas

Attacks against plain RSA signatures

• Signature of m is s=md mod N.

• Universally forgeable under a chosen message attack:

– Universal forgery: the adversary can forge the signature of
any message of its choice.

– Chosen message attack: the adversary can ask for
signatures of messages of its choice.

• Existentially forgeable under key only attack.

– Existential forgery: succeeds in forging the signature of at
least one message.

– Key only attack: the adversary knows the public
verification key but does not ask any queries.

page 9May 22, 2011 Introduction to Cryptography, Benny Pinkas

RSA with a full domain hash function

• Signature is sig(m) = (H(m))d mod N.

– H() is such that its range is [1,N]

• The system is no longer homomorphic

– sig(m) · sig(m’) ≠ sig(m·m’)

• Seems hard to generate a random signature

– Computing se is insufficient, since it is also required to
show m s.t. H(m) = se.

• Proof of security in the random oracle model – where
H() is modeled as a random function

The random oracle model

• In the real world, an attacker has access to the actual code
that implements a hash function H.

• In our analysis attacker has only "oracle access" to H.
– Attacker sends input x.

– If this is the first query with this value, receives random H(x).

– Otherwise, receives the value previously given for H(x).

• Proof strategy:
– If there exists an attacker A that breaks a cryptosystem with random

oracle access, then there exists an attacker B that contradicts the RSA
assumption.

– Namely, if we believe in the RSA assumption, then if we use a random
oracle like hash function then the system is secure.

page 10May 22, 2011 Introduction to Cryptography, Benny Pinkas

page 11May 22, 2011 Introduction to Cryptography, Benny Pinkas

RSA with full domain hash –proof of security

• Claim: Assume that H() is a random function, then if there is
a polynomial-time A() which performs existential forgery with
non-negligible probability, then it is possible to invert the
RSA function, on a random input, with non-negligible
probability.

• Proof:
– Our input: y. Our challenge is to compute yd mod N.

– Claim: A() which forges a signature of m, must query H(m)

– A() queries H() and a signature oracle sig() (which computes the RSA
function) and generates a signature s of a message for which it did not
query sig().

– Suppose A() made at most t queries to H(), asking for H(m1),…,H(mt).
Suppose also that it always queries H(m) before querying sig(H(m)).

– We will show how to use A() to compute yd mod N.

page 12May 22, 2011 Introduction to Cryptography, Benny Pinkas

RSA with full domain hash –proof of security

• Proof (contd.)

• Let us first assume that A always forges the signature of mt (the last
query it sends to H()),

– We can decide how to answer A’s queries to H(),sig().

– Answer queries to H() as follows:

• The answer to the tth query (mt) is y.

• The answer to the jth query (j<t) is (rj)
e, where rj is random.

– Answer to sig(x) queries:

• These are only asked for x=H(mj) where j<t. Answer with rj. (Indeed
sig(H(mj))= (H(mj))

d = rj)

– A’s output is (mt,s).

• If s is the correct signature, then we found yd.

• Otherwise we failed.

– Success probability the same as the success probability of A().

page 13May 22, 2011 Introduction to Cryptography, Benny Pinkas

RSA with full domain hash –proof of security

• Proof (without assuming which mi A will try to sign)
– We can decide how to answer A’s queries to H(),sig().

– Choose a random i in [1,t], answer queries to H() as follows:

• The answer to the ith query (mi) is y.

• The answer to the jth query (j≠i) is (rj)
e, where rj is random.

– Answer to sig(x) queries:

• If x=H(mj), j≠i, then answer with rj. Indeed sig(H(mj))=(H(mj))
d=rj

• If m=mi then stop. (we failed)

– A’s output is (m,s).

• If m=mi and s is the correct signature, then we found yd.

• Otherwise we failed.

– Success probability is 1/t times the success probability of A().

page 14May 22, 2011 Introduction to Cryptography, Benny Pinkas

El Gamal signature scheme

• Invented by same person but different than the
encryption scheme. (think why)

• A randomized signature: same message can have
different signatures.

• Based on the hardness of extracting discrete logs

• The DSA (Digital Signature Algorithm/Standard) that
was adopted by NIST in 1994 is a variation of El-Gamal
signatures.

page 15May 22, 2011 Introduction to Cryptography, Benny Pinkas

El Gamal signatures

• Key generation:

– Work in a group Zp
* where discrete log is hard.

– Let g be a generator of Zp
*.

– Private key 1 < a < p-1.

– Public key p, g, y=ga.

• Signature: (of M)

– Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.

– Compute m=H(M).

• r = gk mod p.

• s = (m - r·a)·k -1 mod (p-1)

– Signature is r, s.

page 16May 22, 2011 Introduction to Cryptography, Benny Pinkas

El Gamal signatures

• Signature:

– Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.

– Compute

• r = gk mod p.

• s = (m - r·a)·k-1 mod (p-1)

• Verification:

– Accept if

• 0 < r < p

• yr · rs = gm mod p

• It works since yr·rs = (ga)r ·(gk)s = gar ·gm-ra = gm

• Overhead:

– Signature: one (offline) exp. Verification: three exps.

same r in

both places!

page 17May 22, 2011 Introduction to Cryptography, Benny Pinkas

El Gamal signature: comments

• Can work in any finite Abelian group

– The discrete log problem appears to be harder in elliptic
curves over finite fields than in Zp* of the same size.

– Therefore can use smaller groups ⇒ shorter signatures.

• Forging: find yr · rs = gm mod p

– E.g., choose random r = gk and either solve dlog of gm/yr to
the base r, or find s=k-1(m - loggy · r) (????)

• Notes:

– A different k must be used for every signature

– If no hash function is used (i.e. sign M rather than
m=H(M)), existential forgery is possible

– If receiver doesn’t check that 0<r<p, adversary can sign
messages of his choice.

page 18May 22, 2011 Introduction to Cryptography, Benny Pinkas

Key Infrastructure for symmetric key encryption

• Each user has a shared key with each other user

– A total of n(n-1)/2 keys

– Each user stores n-1 keys

page 19May 22, 2011 Introduction to Cryptography, Benny Pinkas

Key Distribution Center (KDC)

• The KDC shares a symmetric key Ku with every user u

• Using this key they can establish a trusted channel

• When u wants to communicate with v

– u sends a request to the KDC

– The KDC

• authenticates u

• generates a key Kuv to be used by u and v

• sends Enc(Ku, Kuv) to u, and Enc(Kv, Kuv) to v

page 20May 22, 2011 Introduction to Cryptography, Benny Pinkas

Key Distribution Center (KDC)

• Advantages:

– A total of n keys, one key per user.

– easier management of joining and leaving users.

• Disadvantages:

– The KDC can impersonate anyone

– The KDC is a single point of failure, for both

• security

• quality of service

• Multiple copies of the KDC

– More security risks

– But better availability

page 21May 22, 2011 Introduction to Cryptography, Benny Pinkas

Trusting public keys

• Public key technology requires every user to remember
its private key, and to have access to other users’
public keys

• How can the user verify that a public key PKv

corresponds to user v?

– What can go wrong otherwise?

• A simple solution:

– A trusted public repository of public keys and
corresponding identities

• Doesn’t scale up

• Requires online access per usage of a new public key

page 22May 22, 2011 Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

• A method to bootstrap trust

– Start by trusting a single party and knowing its public key

– Use this to establish trust with other parties (and associate
them with public keys)

• The Certificate Authority (CA) is trusted party.

– All users have a copy of the public key of the CA

– The CA signs Alice’s digital certificate. A simplified
certificate is of the form (Alice, Alice’s public key).

page 23May 22, 2011 Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

• When we get Alice’s certificate, we

– Examine the identity in the certificate

– Verify the signature

– Use the public key given in the certificate to

• Encrypt messages to Alice

• Or, verify signatures of Alice

• The certificate can be sent by Alice without any online
interaction with the CA.

page 24May 22, 2011 Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

• Unlike KDCs, the CA does not have to be online to
provide keys to users
– It can therefore be better secured than a KDC

– The CA does not have to be available all the time

• Users only keep a single public key – of the CA

• The certificates are not secret. They can be stored in a
public place.

• When a user wants to communicate with Alice, it can
get her certificate from either her, the CA, or a public
repository.

• A compromised CA
– can mount active attacks (certifying keys as being Alice’s)

– but it cannot decrypt conversations.

page 25May 22, 2011 Introduction to Cryptography, Benny Pinkas

Certification Authorities (CA)

• An example.

– To connect to a secure web site using SSL or TLS, we
send an https:// command

– The web site sends back a public key(1), and a certificate.

– Our browser

• Checks that the certificate belongs to the url we’re visiting

• Checks the expiration date

• Checks that the certificate is signed by a CA whose public key
is known to the browser

• Checks the signature

• If everything is fine, it chooses a session key and sends it to
the server encrypted with RSA using the server’s public key

(1) This is a very simplified version of the actual protocol.

page 26May 22, 2011 Introduction to Cryptography, Benny Pinkas

An example of an X.509 certificate

Certificate:
Data:

Version: 1 (0x0)
Serial Number: 7829 (0x1e95)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,
OU=Certification Services Division, CN=Thawte Server
CA/emailAddress=server-certs@thawte.com

Validity
Not Before: Jul 9 16:04:02 1998 GMT
Not After : Jul 9 16:04:02 1999 GMT

Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU=FreeSoft,
CN=www.freesoft.org/emailAddress=baccala@freesoft.org

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus (1024 bit): 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:

33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:
66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66:
70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:
16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77:
8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:
d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8: e8:35:1c:9e:27:52:7e:41:8f

Exponent: 65537 (0x10001)

Signature Algorithm: md5WithRSAEncryption
93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:
92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:…

page 27May 22, 2011 Introduction to Cryptography, Benny Pinkas

page 28May 22, 2011 Introduction to Cryptography, Benny Pinkas

page 29May 22, 2011 Introduction to Cryptography, Benny Pinkas

page 30May 22, 2011 Introduction to Cryptography, Benny Pinkas

page 31May 22, 2011 Introduction to Cryptography, Benny Pinkas

Certificates

• A certificate usually contains the following information

– Owner’s name

– Owner’s public key

– Encryption/signature algorithm

– Name of the CA

– Serial number of the certificate

– Expiry date of the certificate

– …

• Your web browser contains the public keys of some
CAs

• A web site identifies itself by presenting a certificate
which is signed by a chain starting at one of these CAs

page 32May 22, 2011 Introduction to Cryptography, Benny Pinkas

An example of an X.509 certificate

Certificate:
Data:

Version: 1 (0x0)
Serial Number: 7829 (0x1e95)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,
OU=Certification Services Division, CN=Thawte Server
CA/emailAddress=server-certs@thawte.com

Validity
Not Before: Jul 9 16:04:02 1998 GMT
Not After : Jul 9 16:04:02 1999 GMT

Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU=FreeSoft,
CN=www.freesoft.org/emailAddress=baccala@freesoft.org

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus (1024 bit): 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:

33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:
66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66:
70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:
16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77:
8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:
d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8: e8:35:1c:9e:27:52:7e:41:8f

Exponent: 65537 (0x10001)

Signature Algorithm: md5WithRSAEncryption
93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:
92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:…

page 33May 22, 2011 Introduction to Cryptography, Benny Pinkas

Public Key Infrastructure (PKI)

• The goal: build trust on a global level

• Running a CA:

– If people trust you to vouch for other parties, everyone
needs you.

– A license to print money

– But,

• The CA should limit its responsibilities, buy insurance…

• It should maintain a high level of security

• Bootstrapping: how would everyone get the CA’s public key?

page 34May 22, 2011 Introduction to Cryptography, Benny Pinkas

Public Key Infrastructure (PKI)

• Monopoly: a single CA vouches for all public keys
– Mostly suitable for enterprises.

• Monopoly + delegated CAs:
– top level CA can issue special certificates for other CAs

– Certificates of the form
• [(Alice, PKA)CA3, (CA3, PKCA3)CA1, (CA1, PKCA1)ROOT-CA]

Root CA

CA1 CA2

CA3

Alice

Bob

page 35May 22, 2011 Introduction to Cryptography, Benny Pinkas

Certificate chain

page 36May 22, 2011 Introduction to Cryptography, Benny Pinkas

Revocation

• Revocation is a key component of PKI

– Each certificate has an expiry date

– But certificates might get stolen, employees might leave
companies, etc.

– Certificates might therefore need to be revoked before
their expiry date

– New problem: before using a certificate we must verify that
it has not been revoked

• Often the most costly aspect of running a large scale public
key infrastructure (PKI)

• How can this be done efficiently?

