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Non Repudiation

• Prevent signer from denying that it signed the message

• I.e., the receiver can prove to third parties that the 
message was signed by the signer

• This is different than message authentication (MACs)

– There the receiver is assured that the message was sent 
by the receiver and was not changed in transit

– But the receiver cannot prove this to other parties

• MACs: sender and receiver share a secret key K

• If R sees a message MACed with K, it knows that it could 
have only been generated by S

• But if R shows the MAC to a third party, it cannot prove that 
the MAC was generated by S and not by R
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Signing/verification process

Document M
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algorithm
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Signature of M

Public verification key

verification
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valid / invalid

signer 

verifier Signature 

depends on M
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Message lengths

• A technical problem: 
– |m| might be longer than |N|

– m might not be in the domain of f -1()

Solution “hash-and-sign” paradigm:

• Signing: First compute H(m), then compute the 
signature f -1(H(M)).  Where, 
– The range of H() must be contained in the domain of f -1().

– H() must be collision intractable. I.e. it is hard to find (in 
polynomial time) messages m, m’ s.t. H(m)=H(m’).

• Verification: 
– Compute f(s). Compare to H(m).

• Using H() is also good for security reasons. See below.
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Security definitions for digital signatures

• Attacks against digital signatures

– Key only attack: the adversary knows only the verification 
key

– Known signature attack: in addition, the adversary has 
some message/signature pairs.

– Chosen message attack: the adversary can ask for 
signatures of messages of its choice (e.g. attacking a 
notary system). 

(Seems even more reasonable than chosen message 
attacks against encryption.)
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Security definitions for digital signatures

• Several levels of success for the adversary

– Existential forgery: the adversary succeeds in forging the 
signature of one message.

– Selective forgery: the adversary succeeds in forging the 
signature of one message of its choice.

– Universal forgery: the adversary can forge the signature of 
any message.

– Total break: the adversary finds the private signature key.

• Different levels of security, against different attacks, are 
required for different scenarios. 
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Example: simple RSA based signatures

• Key generation: (as in RSA)

– Alice picks random p,q. Defines N=pq and finds e·d=1 
mod (p-1)(q-1).

– Public verification key: (N,e)

– Private signature key: d

• Signing: Given m, Alice computes s=md mod N. 

• (suppose that there is no hash function H())

• Verification: given m,s and public key (N,e).

– Compute m’ = se mod N.

– Output “valid” iff m’=m.
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Attacks against plain RSA signatures

• Signature of m is s=md mod N.

• Universally forgeable under a chosen message attack:

– Universal forgery: the adversary can forge the signature of 
any message of its choice.

– Chosen message attack: the adversary can ask for 
signatures of messages of its choice.

• Existentially forgeable under key only attack.

– Existential forgery: succeeds in forging the signature of at 
least one message.

– Key only attack: the adversary knows the public 
verification key but does not ask any queries.
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RSA with a full domain hash function

• Signature is sig(m) = (H(m))d mod N.

– H() is such that its range is [1,N]

• The system is no longer homomorphic

– sig(m) · sig(m’) ≠ sig(m·m’)

• Seems hard to generate a random signature 

– Computing se is insufficient, since it is also required to 
show m s.t. H(m) = se.

• Proof of security in the random oracle model – where 
H() is modeled as a random function



The random oracle model

• In the real world, an attacker has access to the actual code 
that implements a hash function H.

• In our analysis attacker has only "oracle access" to H. 
– Attacker sends input x.

– If this is the first query with this value, receives random H(x). 

– Otherwise, receives the value previously given for H(x).

• Proof strategy:
– If there exists an attacker A that breaks a cryptosystem with random 

oracle access, then there exists an attacker B that contradicts the RSA 
assumption.

– Namely, if we believe in the RSA assumption, then if we use a random 
oracle like hash function then the system is secure.
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RSA with full domain hash –proof of security

• Claim: Assume that H() is a random function, then if there is 
a polynomial-time A() which performs existential forgery with 
non-negligible probability, then it is possible to invert the 
RSA function, on a random input, with non-negligible 
probability.

• Proof:
– Our input: y. Our challenge is to compute yd mod N.

– Claim: A() which forges a signature of m, must query H(m)

– A() queries H() and a signature oracle sig() (which  computes the RSA 
function) and generates a signature s of a message for which it did not 
query sig().

– Suppose A() made at most t queries to H(), asking for H(m1),…,H(mt ). 
Suppose also that it always queries H(m) before querying sig(H(m)). 

– We will show how to use A() to compute yd mod N.
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RSA with full domain hash –proof of security

• Proof (contd.) 

• Let us first assume that A always forges the signature of mt (the last 
query it sends to H() ), 

– We can decide how to answer A’s queries to H(),sig().

– Answer queries to H() as follows:

• The answer to the tth query (mt) is y.

• The answer to the jth query (j<t) is (rj)
e, where rj is random.

– Answer to sig(x) queries:

• These are only asked for x=H(mj) where j<t. Answer with rj. (Indeed 
sig(H(mj))= (H(mj))

d = rj ) 

– A’s output is (mt,s).

• If s is the correct signature, then we found yd.

• Otherwise we failed.

– Success probability the same as the success probability of A().
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RSA with full domain hash –proof of security

• Proof (without assuming which mi  A will try to sign)
– We can decide how to answer A’s queries to H(),sig().

– Choose a random i in [1,t], answer queries to H() as follows:

• The answer to the ith query (mi) is y.

• The answer to the jth query (j≠i) is (rj)
e, where rj is random.

– Answer to sig(x) queries:

• If x=H(mj), j≠i, then answer with rj. Indeed sig(H(mj))=(H(mj))
d=rj

• If m=mi then stop. (we failed)

– A’s output is (m,s).

• If m=mi and s is the correct signature, then we found yd.

• Otherwise we failed.

– Success probability is 1/t times the success probability of A().



page 14May 22, 2011 Introduction to Cryptography, Benny Pinkas      

El Gamal signature scheme

• Invented by same person but different than the 
encryption scheme. (think why)

• A randomized signature: same message can have 
different signatures.

• Based on the hardness of extracting discrete logs 

• The DSA (Digital Signature Algorithm/Standard) that 
was adopted by NIST in 1994 is a variation of El-Gamal 
signatures. 
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El Gamal signatures

• Key generation:

– Work in a group Zp
* where discrete log is hard. 

– Let g be a generator of Zp
*.

– Private key  1 < a < p-1.

– Public key p, g, y=ga.

• Signature: (of M)

– Pick random 1 < k < p-1,  s.t. gcd(k,p-1)=1.

– Compute m=H(M).

• r = gk mod p.

• s = (m - r·a)·k -1 mod (p-1)

– Signature is r, s.
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El Gamal signatures

• Signature:

– Pick random 1 < k < p-1,  s.t. gcd(k,p-1)=1.

– Compute

• r = gk mod p.

• s = (m - r·a)·k-1 mod (p-1)

• Verification:

– Accept if

• 0 < r < p

• yr · rs = gm mod p

• It works since yr·rs = (ga)r ·(gk)s = gar ·gm-ra = gm

• Overhead: 

– Signature: one (offline) exp.    Verification: three exps.

same r in 

both places!
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El Gamal signature: comments

• Can work in any finite Abelian group

– The discrete log problem appears to be harder in elliptic 
curves over finite fields than in Zp* of the same size.

– Therefore can use smaller groups ⇒ shorter signatures.

• Forging: find  yr · rs = gm mod p

– E.g., choose random r = gk and either solve dlog of gm/yr to 
the base r,   or find s=k-1(m - loggy · r)    (????)

• Notes:

– A different k must be used for every signature

– If no hash function is used (i.e. sign M rather than 
m=H(M)), existential forgery is possible

– If receiver doesn’t check that 0<r<p, adversary can sign 
messages of his choice.
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Key Infrastructure for symmetric key encryption

• Each user has a shared key with each other user

– A total of n(n-1)/2 keys

– Each user stores n-1 keys
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Key Distribution Center (KDC)

• The KDC shares a symmetric key Ku with every user u

• Using this key they can establish a trusted channel

• When u wants to communicate with v

– u sends a request to the KDC

– The KDC 

• authenticates u

• generates a key Kuv to be used by u and v

• sends Enc(Ku, Kuv) to u, and Enc(Kv, Kuv) to v
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Key Distribution Center (KDC)

• Advantages: 

– A total of n keys, one key per user.

– easier management of joining and leaving users.

• Disadvantages:

– The KDC can impersonate anyone

– The KDC is a single point of failure, for both

• security 

• quality of service

• Multiple copies of the KDC

– More security risks

– But better availability
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Trusting public keys

• Public key technology requires every user to remember 
its private key, and to have access to other users’ 
public keys

• How can the user verify that a public key PKv 

corresponds to user v?

– What can go wrong otherwise?

• A simple solution:

– A trusted public repository of public keys and 
corresponding identities

• Doesn’t scale up

• Requires online access per usage of a new public key
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Certification Authorities (CA)

• A method to bootstrap trust

– Start by trusting a single party and knowing its public key

– Use this to establish trust with other parties (and associate 
them with public keys)

• The Certificate Authority (CA) is trusted party.

– All users have a copy of the public key of the CA

– The CA signs Alice’s digital certificate. A simplified 
certificate is of the form  (Alice, Alice’s public key).
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Certification Authorities (CA)

• When we get Alice’s certificate, we 

– Examine the identity in the certificate

– Verify the signature

– Use the public key given in the certificate to

• Encrypt messages to Alice

• Or, verify signatures of Alice

• The certificate can be sent by Alice without any online 
interaction with the CA.
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Certification Authorities (CA)

• Unlike KDCs, the CA does not have to be online to 
provide keys to users
– It can therefore be better secured than a KDC

– The CA does not have to be available all the time

• Users only keep a single public key – of the CA

• The certificates are not secret. They can be stored in a 
public place. 

• When a user wants to communicate with Alice, it can 
get her certificate from either her, the CA, or a public 
repository. 

• A compromised CA 
– can mount active attacks (certifying keys as being Alice’s)

– but it cannot decrypt conversations. 
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Certification Authorities (CA)

• An example.

– To connect to a secure web site using SSL or TLS, we 
send an https:// command

– The web site sends back a public key(1), and a certificate.

– Our browser

• Checks that the certificate belongs to the url we’re visiting

• Checks the expiration date

• Checks that the certificate is signed by a CA whose public key 
is known to the browser

• Checks the signature

• If everything is fine, it chooses a session key and sends it to 
the server encrypted with RSA using the server’s public key

(1) This is a very simplified version of the actual protocol.



page 26May 22, 2011 Introduction to Cryptography, Benny Pinkas      

An example of an X.509 certificate

Certificate:
Data:

Version: 1 (0x0)
Serial Number: 7829 (0x1e95)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc, 
OU=Certification Services Division, CN=Thawte Server 
CA/emailAddress=server-certs@thawte.com

Validity
Not Before: Jul 9 16:04:02 1998 GMT
Not After : Jul 9 16:04:02 1999 GMT

Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU=FreeSoft, 
CN=www.freesoft.org/emailAddress=baccala@freesoft.org

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus (1024 bit): 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb: 

33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1: 
66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66: 
70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17: 
16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b: 
c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77: 
8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3: 
d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8: e8:35:1c:9e:27:52:7e:41:8f

Exponent: 65537 (0x10001)

Signature Algorithm: md5WithRSAEncryption
93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d: 
92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:…
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Certificates

• A certificate usually contains the following information

– Owner’s name

– Owner’s public key

– Encryption/signature algorithm

– Name of the CA

– Serial number of the certificate

– Expiry date of the certificate

– …

• Your web browser contains the public keys of some 
CAs

• A web site identifies itself by presenting a certificate 
which is signed by a chain starting at one of these CAs
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An example of an X.509 certificate

Certificate:
Data:

Version: 1 (0x0)
Serial Number: 7829 (0x1e95)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc, 
OU=Certification Services Division, CN=Thawte Server 
CA/emailAddress=server-certs@thawte.com

Validity
Not Before: Jul 9 16:04:02 1998 GMT
Not After : Jul 9 16:04:02 1999 GMT

Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU=FreeSoft, 
CN=www.freesoft.org/emailAddress=baccala@freesoft.org

Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus (1024 bit): 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb: 

33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1: 
66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66: 
70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17: 
16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b: 
c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77: 
8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3: 
d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8: e8:35:1c:9e:27:52:7e:41:8f

Exponent: 65537 (0x10001)

Signature Algorithm: md5WithRSAEncryption
93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d: 
92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:…
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Public Key Infrastructure (PKI)

• The goal: build trust on a global level

• Running a CA:

– If people trust you to vouch for other parties, everyone 
needs you.

– A license to print money

– But,

• The CA should limit its responsibilities, buy insurance…

• It should maintain a high level of security

• Bootstrapping: how would everyone get the CA’s public key?
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Public Key Infrastructure (PKI)

• Monopoly: a single CA vouches for all public keys
– Mostly suitable for enterprises.

• Monopoly + delegated CAs:
– top level CA can issue special certificates for other CAs

– Certificates of the form 
• [ (Alice, PKA)CA3, (CA3, PKCA3)CA1, (CA1, PKCA1)ROOT-CA ]

Root CA

CA1 CA2

CA3

Alice

Bob



page 35May 22, 2011 Introduction to Cryptography, Benny Pinkas      

Certificate chain
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Revocation

• Revocation is a key component of PKI

– Each certificate has an expiry date

– But certificates might get stolen, employees might leave 
companies, etc.

– Certificates might therefore need to be revoked before 
their expiry date

– New problem: before using a certificate we must verify that 
it has not been revoked

• Often the most costly aspect of running a large scale public 
key infrastructure (PKI)

• How can this be done efficiently?


