Introduction to Cryptography Lecture 10

Digital signatures, Public Key Infrastructure (PKI)

Benny Pinkas

Non Repudiation

- Prevent signer from denying that it signed the message
- I.e., the receiver can prove to third parties that the message was signed by the signer
- This is different than message authentication (MACs)
 - There the receiver is assured that the message was sent by the receiver and was not changed in transit
 - But the receiver cannot prove this to other parties
 - MACs: sender and receiver share a secret key K
 - If R sees a message MACed with K, it knows that it could have only been generated by S
 - But if R shows the MAC to a third party, it cannot prove that the MAC was generated by S and not by R

Signing/verification process

Message lengths

- A technical problem:
 - |m| might be longer than |N|
 - m might not be in the domain of $f^{-1}()$

Solution "hash-and-sign" paradigm:

- Signing: First compute H(m), then compute the signature $f^{-1}(H(M))$. Where,
 - The range of H() must be contained in the domain of $f^{-1}()$.
 - H() must be collision intractable. I.e. it is hard to find (in polynomial time) messages m, m' s.t. H(m)=H(m).
- Verification:
 - Compute f(s). Compare to H(m).
- Using H() is also good for security reasons. See below.

Security definitions for digital signatures

- Attacks against digital signatures
 - Key only attack: the adversary knows only the verification key
 - Known signature attack: in addition, the adversary has some message/signature pairs.
 - Chosen message attack: the adversary can ask for signatures of messages of its choice (e.g. attacking a notary system).
 - (Seems even more reasonable than chosen message attacks against encryption.)

Security definitions for digital signatures

- Several levels of success for the adversary
 - Existential forgery: the adversary succeeds in forging the signature of one message.
 - Selective forgery: the adversary succeeds in forging the signature of one message of its choice.
 - Universal forgery: the adversary can forge the signature of any message.
 - Total break: the adversary finds the private signature key.
- Different levels of security, against different attacks, are required for different scenarios.

Example: simple RSA based signatures

- Key generation: (as in RSA)
 - Alice picks random p,q. Defines N=pq and finds $e \cdot d=1$ mod (p-1)(q-1).
 - Public verification key: (N,e)
 - Private signature key: d
- Signing: Given m, Alice computes s=m^d mod N.
- (suppose that there is no hash function H())
- Verification: given m,s and public key (N,e).
 - Compute $m' = s^e \mod N$.
 - Output "valid" iff m'=m.

Attacks against plain RSA signatures

- Signature of m is $s=m^d \mod N$.
- Universally forgeable under a chosen message attack:
 - Universal forgery: the adversary can forge the signature of any message of its choice.
 - Chosen message attack: the adversary can ask for signatures of messages of its choice.
- Existentially forgeable under key only attack.
 - Existential forgery: succeeds in forging the signature of at least one message.
 - Key only attack: the adversary knows the public verification key but does not ask any queries.

RSA with a full domain hash function

- Signature is $sig(m) = (H(m))^d \mod N$.
 - H() is such that its range is [1,N]
- The system is no longer homomorphic
 - $sig(m) \cdot sig(m') \neq sig(m \cdot m')$
- Seems hard to generate a random signature
 - Computing s^e is insufficient, since it is also required to show m s.t. $H(m) = s^e$.
- Proof of security in the random oracle model where H() is modeled as a random function

The random oracle model

- In the real world, an attacker has access to the actual code that implements a hash function H.
- In our analysis attacker has only "oracle access" to H.
 - Attacker sends input x.
 - If this is the first query with this value, receives random H(x).
 - Otherwise, receives the value previously given for H(x).

Proof strategy:

- If there exists an attacker A that breaks a cryptosystem with random oracle access, then there exists an attacker B that contradicts the RSA assumption.
- Namely, if we believe in the RSA assumption, then if we use a random oracle like hash function then the system is secure.

RSA with full domain hash -proof of security

 Claim: Assume that H() is a random function, then if there is a polynomial-time A() which performs existential forgery with non-negligible probability, then it is possible to invert the RSA function, on a random input, with non-negligible probability.

Proof:

- Our input: y. Our challenge is to compute y^d mod N.
- Claim: A() which forges a signature of m, must query H(m)
- A() queries H() and a signature oracle sig() (which computes the RSA function) and generates a signature s of a message for which it did not query sig().
- Suppose A() made at most t queries to H(), asking for $H(m_1), ..., H(m_t)$. Suppose also that it always queries H(m) before querying sig(H(m)).
- We will show how to use A() to compute $y^d \mod N$.

RSA with full domain hash -proof of security

- Proof (contd.)
- Let us first assume that A always forges the signature of m_t (the last query it sends to H()),
 - We can decide how to answer A's queries to H(),sig().
 - Answer queries to H() as follows:
 - The answer to the t^{th} query (m_t) is y.
 - The answer to the j^{th} query (j < t) is $(r_i)^e$, where r_i is random.
 - Answer to sig(x) queries:
 - These are only asked for $x=H(m_j)$ where j < t. Answer with r_j . (Indeed $sig(H(m_j)) = (H(m_j))^d = r_j$)
 - A's output is (m_t,s) .
 - If s is the correct signature, then we found y^d .
 - Otherwise we failed.
 - Success probability the same as the success probability of A().

RSA with full domain hash -proof of security

- Proof (without assuming which m_i A will try to sign)
 - We can decide how to answer A's queries to H(), sig().
 - Choose a random i in [1,t], answer queries to H() as follows:
 - The answer to the *i*th query (m_i) is *y*.
 - The answer to the jth query $(j\neq i)$ is $(r_i)^e$, where r_i is random.
 - Answer to sig(x) queries:
 - If $x=H(m_j)$, $j\neq i$, then answer with r_j . Indeed $sig(H(m_j))=(H(m_j))^d=r_j$
 - If m=m_i then stop. (we failed)
 - A's output is (m,s).
 - If $m=m_i$ and s is the correct signature, then we found y^d .
 - Otherwise we failed.
 - Success probability is 1/t times the success probability of A().

El Gamal signature scheme

- Invented by same person but different than the encryption scheme. (think why)
- A randomized signature: same message can have different signatures.
- Based on the hardness of extracting discrete logs
- The DSA (Digital Signature Algorithm/Standard) that was adopted by NIST in 1994 is a variation of El-Gamal signatures.

El Gamal signatures

- Key generation:
 - Work in a group Z_p^* where discrete log is hard.
 - Let g be a generator of Z_p^* .
 - Private key 1 < a < p-1.
 - − Public key p, g, y=g^a.
- Signature: (of M)
 - Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
 - Compute m=H(M).
 - $r = g^k \mod p$.
 - $s = (m r \cdot a) \cdot k^{-1} \mod (p-1)$
 - Signature is *r*, *s*.

El Gamal signatures

- Signature:
 - Pick random 1 < k < p-1, s.t. gcd(k,p-1)=1.
 - Compute
 - $r = g^k \mod p$.
 - $s = (m r \cdot a) \cdot k^{-1} \mod (p-1)$
- · Verification:
 - Accept if
 - $\cdot 0 < r < p$
 - $y^r \cdot r^s = g^m \mod p$
- It works since $y^r \cdot r^s = (g^a)^r \cdot (g^k)^s = g^{ar} \cdot g^{m-ra} = g^m$
- Overhead:
 - Signature: one (offline) exp. Verification: three exps.

same r in

both places!

El Gamal signature: comments

- Can work in any finite Abelian group
 - The discrete log problem appears to be harder in elliptic curves over finite fields than in Z_p^* of the same size.
 - Therefore can use smaller groups \Rightarrow shorter signatures.
- Forging: find $y^r \cdot r^s = g^m \mod p$
 - E.g., choose random $r = g^k$ and either solve dlog of g^m/y^r to the base r, or find $s=k^{-1}(m \log_q y \cdot r)$ (????)
- Notes:
 - A different k must be used for every signature
 - If no hash function is used (i.e. sign M rather than m=H(M)), existential forgery is possible
 - If receiver doesn't check that 0<r<p, adversary can sign messages of his choice.

Key Infrastructure for symmetric key encryption

- Each user has a shared key with each other user
 - A total of n(n-1)/2 keys
 - Each user stores n-1 keys

Key Distribution Center (KDC)

- The KDC shares a symmetric key K_u with every user u
- Using this key they can establish a trusted channel
- When u wants to communicate with v
 - u sends a request to the KDC
 - The KDC
 - authenticates u
 - generates a key K_{uv} to be used by u and v
 - sends $Enc(K_u, K_{uv})$ to u, and $Enc(K_v, K_{uv})$ to v

Key Distribution Center (KDC)

- Advantages:
 - A total of n keys, one key per user.
 - easier management of joining and leaving users.
- Disadvantages:
 - The KDC can impersonate anyone
 - The KDC is a single point of failure, for both
 - security
 - quality of service
- Multiple copies of the KDC
 - More security risks
 - But better availability

Trusting public keys

- Public key technology requires every user to remember its private key, and to have access to other users' public keys
- How can the user verify that a public key PK_v corresponds to user v?
 - What can go wrong otherwise?
- A simple solution:
 - A trusted public repository of public keys and corresponding identities
 - Doesn't scale up
 - Requires online access per usage of a new public key

- A method to bootstrap trust
 - Start by trusting a single party and knowing its public key
 - Use this to establish trust with other parties (and associate them with public keys)
- The Certificate Authority (CA) is trusted party.
 - All users have a copy of the public key of the CA
 - The CA signs Alice's digital certificate. A simplified certificate is of the form (Alice, Alice's public key).

- When we get Alice's certificate, we
 - Examine the identity in the certificate
 - Verify the signature
 - Use the public key given in the certificate to
 - Encrypt messages to Alice
 - Or, verify signatures of Alice
- The certificate can be sent by Alice without any online interaction with the CA.

- Unlike KDCs, the CA does not have to be online to provide keys to users
 - It can therefore be better secured than a KDC
 - The CA does not have to be available all the time
- Users only keep a single public key of the CA
- The certificates are not secret. They can be stored in a public place.
- When a user wants to communicate with Alice, it can get her certificate from either her, the CA, or a public repository.
- A compromised CA
 - can mount active attacks (certifying keys as being Alice's)
 - but it cannot decrypt conversations.

- An example.
 - To connect to a secure web site using SSL or TLS, we send an https:// command
 - The web site sends back a public key⁽¹⁾, and a certificate.
 - Our browser
 - Checks that the certificate belongs to the url we're visiting
 - Checks the expiration date
 - Checks that the certificate is signed by a CA whose public key is known to the browser
 - Checks the signature
 - If everything is fine, it chooses a session key and sends it to the server encrypted with RSA using the server's public key

⁽¹⁾ This is a very simplified version of the actual protocol.

An example of an X.509 certificate

```
Certificate:
  Data:
    Version: 1 (0x0)
    Serial Number: 7829 (0x1e95)
    Signature Algorithm: md5WithRSAEncryption
    Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,
      OU=Certification Services Division, CN=Thawte Server
      CA/emailAddress=server-certs@thawte.com
    Validity
          Not Before: Jul 9 16:04:02 1998 GMT
          Not After: Jul 9 16:04:02 1999 GMT
    Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU=FreeSoft,
      CN=www.freesoft.org/emailAddress=baccala@freesoft.org
    Subject Public Key Info:
          Public Key Algorithm: rsaEncryption
          RSA Public Key: (1024 bit)
          Modulus (1024 bit): 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:
            33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:
           66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66:
            70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:
           16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
           c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77:
           8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:
           d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8: e8:35:1c:9e:27:52:7e:41:8f
          Exponent: 65537 (0x10001)
  Signature Algorithm: md5WithRSAEncryption
    93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:
       92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:...
```


Certificates

- A certificate usually contains the following information
 - Owner's name
 - Owner's public key
 - Encryption/signature algorithm
 - Name of the CA
 - Serial number of the certificate
 - Expiry date of the certificate
 - **–** ...
- Your web browser contains the public keys of some CAs
- A web site identifies itself by presenting a certificate which is signed by a chain starting at one of these CAs

An example of an X.509 certificate

```
Certificate:
  Data:
    Version: 1 (0x0)
    Serial Number: 7829 (0x1e95)
    Signature Algorithm: md5WithRSAEncryption
    Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,
      OU=Certification Services Division, CN=Thawte Server
      CA/emailAddress=server-certs@thawte.com
    Validity
          Not Before: Jul 9 16:04:02 1998 GMT
          Not After: Jul 9 16:04:02 1999 GMT
    Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala, OU=FreeSoft,
      CN=www.freesoft.org/emailAddress=baccala@freesoft.org
    Subject Public Key Info:
          Public Key Algorithm: rsaEncryption
          RSA Public Key: (1024 bit)
          Modulus (1024 bit): 00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:
            33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:
           66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66:
            70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:
           16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:
           c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77:
           8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:
           d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8: e8:35:1c:9e:27:52:7e:41:8f
          Exponent: 65537 (0x10001)
  Signature Algorithm: md5WithRSAEncryption
    93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:
       92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:...
```

Public Key Infrastructure (PKI)

- The goal: build trust on a global level
- Running a CA:
 - If people trust you to vouch for other parties, everyone needs you.
 - A license to print money
 - But,
 - The CA should limit its responsibilities, buy insurance...
 - It should maintain a high level of security
 - Bootstrapping: how would everyone get the CA's public key?

Public Key Infrastructure (PKI)

- Monopoly: a single CA vouches for all public keys
 - Mostly suitable for enterprises.
- Monopoly + delegated CAs:
 - top level CA can issue *special* certificates for other CAs
 - Certificates of the form
 - [(Alice, PK_A)_{CA3}, (CA3, PK_{CA3})_{CA1}, (CA1, PK_{CA1})_{ROOT-CA}]

Certificate chain

Revocation

- Revocation is a key component of PKI
 - Each certificate has an expiry date
 - But certificates might get stolen, employees might leave companies, etc.
 - Certificates might therefore need to be revoked before their expiry date
 - New problem: before using a certificate we must verify that it has not been revoked
 - Often the most costly aspect of running a large scale public key infrastructure (PKI)
 - How can this be done efficiently?