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Certification Authorities (CA)

• A method to bootstrap trust

– Start by trusting a single party and knowing its public key

– Use this to establish trust with other parties (and associate 
them with public keys)

• The Certificate Authority (CA) is trusted party.

– All users have a copy of the public key of the CA

– The CA signs Alice’s digital certificate. A simplified 
certificate is of the form  (Alice, Alice’s public key).
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Certification Authorities (CA)

• News about CAs used for MiTM attacks.
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Revocation

• Revocation is a key component of PKI

– Each certificate has an expiry date

– But certificates might get stolen, employees might leave 
companies, etc.

– Certificates might therefore need to be revoked before 
their expiry date

– New problem: before using a certificate we must verify that 
it has not been revoked

• Often the most costly aspect of running a large scale public 
key infrastructure (PKI)

• How can this be done efficiently?
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Certificate Revocation Lists (CRLs)

• A revocation agency (RA) issues a list of revoked 
certificates (i.e., “bad” certificates)

– The list is updated and published regularly (e.g. daily)

– Before trusting a certificate, users must consult the most 
recent CRL in addition to checking the expiry date.

• Advantages: simple.

• Drawbacks:

– Scalability. CRLs can be huge. There is no short proof that 
a certificate is valid. 

– There is a vulnerability windows between a compromise of 
certificate and the next publication of a CRL.

– Need a reliable way of distributing CRLs.

• Improving scalability using “delta CRLs”: a CRL that only 
lists certificates which were revoked since the issuance of a 
specific, previously issued CRL.
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Explicit revocation: OCSP

• OCSP (Online Certificate Status Protocol) 

– RFC 2560, June 1999.

• OCSP can be used in place, or in addition, to CRLs

• Clients send a request for certificate status information.

– An OCSP server sends back a response of "current", 
"expired," or "unknown“.

– The response is signed (by the CA, or a Trusted Responder,  
or an Authorized Responder certified by the CA).

• Provides instantaneous status of certificates

– Overcomes the chief limitation of CRL: the fact that updates 
must be frequently downloaded and parsed by clients to 
keep the list current 
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Certificate Revocation System (CRS)

• Certificate Revocation System (Micali’96)

• Puts the burden of proof on the certificate holder (who 
must prove that the certificate is still valid).

• In theory, we could limit the lifetime of certificates to a 
single day, and require the certificate holder to ask for a 
new certificate every day.
– This would result in a high overhead at the CA
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Certificate Revocation System (CRS)

• It is possible to reduce the overhead of the CA by using 
a hash chain

– The certificate includes Y365 = f 365(Y0 ). This value is part 
of the information signed by the CA. f is one-way.

– On day d, 

• If the certificate is valid, then Y365-d = f 365-d(Y0) is sent by the 
CA to the certificate holder or to a directory. 

• The certificate receiver uses the daily value (f 365-d(Y0) ) to 
verify that the certificate is still valid. (how?)

• Advantage: A short, individual, proof per certificate.

• Disadvantage: Daily overhead, even when a cert is valid.



CA’s work

• How can the server can compute f i(Y0)

• There are two straightforward methods

– Storing all n values

– Storing Y0 and computing f i(Y0) on the fly.

• Another option is to store sqrt(n) intermediate points 
and do sqrt(n) work per computation of each f i(Y0)

• There are also more advanced methods requiring 
log(n) storage and O(1) amortized work per 
computation
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Merkle Hash Tree (will be useful later)

• A method of committing to (by hashing together) n
values, x1,…,xn, such that

– The result is a single hash value

– For any xi, it is possible to prove that it appeared in the 
original list, using a proof of length O(log n).

a b c d e f g h

v00=H(a,b) v01=H(c,d) v10=H(e,f) v11=H(g,h)

v0=H(v00,v01) v1=H(v10,v11)

v=H(v0,v1)
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Merkle Hash Tree

• H is a collision intractable hash function

• Any change to a leaf results in a change to the root

• To sign the set of values it is sufficient to sign the root 
(a single signature instead of n).

• How do we verify that an element appeared in the 
signed set?

a b c d e f g h

v00=H(a,b) v01=H(c,d) v10=H(e,f) v11=H(g,h)

v0=H(v00,v01) v1=H(v10,v11)

v=H(v0,v1)
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Verifying that a appears in the signed set

• Provide a’s leaf, and the siblings of the nodes in the path 
from a to the root. (O(log n) values)

• The verifier can use H to compute the values of the 
nodes in the path from the leaf to the root. 

• It then compares the computed root to the signed value.

a b c d e f g h

v00=H(a,b) v01=H(c,d) v10=H(e,f) v11=H(g,h)

v0=H(v00,v01) v1=H(v10,v11)

v=H(v0,v1)
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Using hash trees to improve the overhead of CRS

• Originally (for a year long certificate)

– the certificate includes f 365(Y0) 

– On day d, certificate holder obtains f 365-d(Y0)

– The certificate receiver computes f 365(Y0) from f 365-d(Y0)
by invoking f() d times.

• Slight improvement:

– The CA assigns a different leaf for every day, constructs a 
hash tree, and signs the root.

– On day d, it releases node d and the siblings of the path 
from it to the root.

– This is the proof that the certificate is valid on day d

– The overhead of verification is O(log 365).
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Certificate Revocation Tree (CRT)  [Kocher]

• (A different usage of a hash tree)

• A CRT is a hash tree with leaves corresponding to 
statements about ranges of certificates

– Statements describe regions of certificate ids, in which 
only the smallest id is revoked.

• For example, a leaf might read: “if 100 ≤ id <234, then cert is 
revoked iff id=100”.

– Each certificate matches exactly one statement.

– The statements are the leaves of a signed hash tree, 
ordered according to the ranges of certificate values.

– To examine the state of a certificate we retrieve the 
statement for the corresponding region.

– A single hash tree is used for all certs.
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Certificate Revocation Tree (CRT) 

– Preferred operation mode:
• Every day the CA constructs an updated tree.

• The CA signs a statement including the root of the tree and 
the date.

• It is Alice’s responsibility to retrieve the leaf which shows that 
her certificate is valid, the route from this leaf to the root, and 
the CA’s signature of the root.

• To prove the validity of her cert, Alice sends this information.

• The receiver verifies the value in the leaf, the route to the 
tree, and the signature.  

– Advantage:
• a short proof for the status of a certificate.

• The CA does not have to handle individual requests.

– Drawback: the entire hash tree must be updated daily.
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SSL / TLS
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SSL/TLS

• General structure of secure HTTP connections

– To connect to a secure web site using SSL or TLS, we 
send an https:// command

– The web site sends back a public key(1), and a certificate.

– Our browser

• Checks that the certificate belongs to the url we’re visiting

• Checks the expiration date

• Checks that the certificate is signed by a CA whose public key 
is known to the browser

• Checks the signature

• If everything is fine, it chooses a session key and sends it to 
the server encrypted with RSA using the server’s public key

(1) This is a very simplified version of the actual protocol.
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SSL/TLS

• SSL (Secure Sockets Layer)

– SSL v2

• Released in 1995 with Netscape 1.1

• A flaw found in the key generation algorithm

– SSL v3

• Improved, released in 1996

• Public design process

• TLS (Transport Layer Security)

– IETF standard, RFC 2246

• Common browsers support all these protocols
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SSL Protocol Stack

• SSL/TLS operates over TCP, which ensures reliable 
transport.

• Supports any application protocol (usually used with 
http).
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SSL/TLS Overview

• Handshake Protocol - establishes a session
– Agreement on algorithms and security parameters

– Identity authentication

– Agreement on a key

– Report error conditions to each other

• Record Protocol - Secures the transferred data
– Message encryption and authentication

• Alert Protocol – Error notification (including “fatal” 
errors).

• Change Cipher Protocol – Activates the pending crypto 
suite
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Simplified SSL Handshake

Client Server

I want to talk, ciphers I support, RC

Certificate (PKServer), cipher I choose, RS

{S}PKserver , {keyed hash of handshake message}

{keyed hash of handshake message}

Data protected by keys derived from K

K= f (S,RC,RS) K= f (S,RC,RS)

compute compute
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A typical run of a TLS protocol

• C ⇒ S
– ClientHello.protocol.version = “TLS version 1.0”

– ClientHello.random = TC, NC

– ClientHello.session_id = “NULL”

– ClientHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”

– ClientHello.compression_method = “NULL”

• S ⇒ C
– ServerHello.protocol.version = “TLS version 1.0”

– ServerHello.random = TS, NS

– ServerHello.session_id = “1234”

– ServerHello.crypto_suite = “RSA: encryption.SHA-1:HMAC”

– ServerHello.compression_method = “NULL”

– ServerCertificate = pointer to server’s certificate

– ServerHelloDone
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Some additional  issues

• More on S ⇒ C

– The ServerHello message can also contain Certificate 
Request Message

– I.e., server may request client to send its certificate 

– Two fields: certificate type and acceptable CAs

• Negotiating crypto suites

– The crypto suite defines the encryption and authentication 
algorithms and the key lengths to be used. 

– ~30 predefined standard crypto suites

– Selection (SSL v3): Client proposes a set of suites. Server 
selects one. 
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Key generation

• Key computation:

– The key is generated in two steps:

– pre-master secret S is exchanged during handshake

– master secret K is a 48 byte value calculated using pre-
master secret and the random nonces

• Session vs. Connection: a session is relatively long lived. Multiple 
TCP connections can be supported under the same SSL/TSL 
connection.

• For each connection: 6 keys are generated from the master 
secret K and from the nonces. (For each direction: encryption 
key, authentication key, IV.)
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TLS Record Protocol
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Some practical issues in number theory 
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Primality testing

• Why do we need primality testing?

– Essentially all public key cryptographic algorithms use 
large prime numbers

– We therefore need an algorithm for prime number 
generation 

– Suppose we have an algorithm “PrimalityTest” with a 
binary output. 

– We can generate random primes as follows
GeneratePrime(a,b)

1. Choose random number x ∈ [a,b]

2. If PrimalityTest(x) then output “x is 

prime”; otherwise goto line 1.
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Density of prime numbers

• How long will GeneratePrime run?

• Let π(n) specify number of primes ≤ n.

• Prime number theorem:

– π(n)  goes to n / ln n  as n goes to infinity.

• Pretty accurate even for small n (e.g. for n=230 it is off 
by 6%).

• Corollary: a random number in [1,n] is prime with 
probability 1/ln n. (e.g. for n=2512, probability is 1/355).

– The GeneratePrime algorithm is expected to take ln n 
rounds.

– If we skip even numbers, we cut running time by ½. 
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Primality testing

• Primality testing is a decision problem: “is x prime or 
composite?”

• Different than the search problem “find all prime factors 
of x” (“factor x”).

• In this case, the decision problem has an efficient 
solution while the search problem does not.

• First algorithm for primality testing: Trial division

– Try to divide x by every prime integer smaller than √x  
(sqrt(x)).

– Infeasible for large x.
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Fermat’s test

• Fermat’s theorem: if p is prime then for all 1 ≤ a < p it 
holds that ap-1 = 1 mod p. 

• If we can find an a s.t ax-1 ≠1 mod x, then x is surely 
composite. 
– Surprisingly, the converse is almost always true, and for a 

large percentage of the choices of a.

– Suppose we check only for a=2.
• If 2x-1 != 1 mod x

–Then return COMPOSITE     /for sure

–Otherwise, return PRIME   /we hope

– How accurate is this program?
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Fermat’s test

• Surprisingly, this test is almost always right

– Wrong for only 22 values of x smaller than 100,000

– Probability of error goes down to 0 as x grows
• For |x|=512 bits, probability of error is < 10-20 ≈ 2-66

• For |x|=1024 bits, probability of error is < 10-41 ≈ 2-136

• The test is therefore sufficient for randomly chosen 
candidate primes

• But we need a better test if x is not chosen at random

• Cannot eliminate errors by checking for bases ≠ 2

– x is a Charmichael number if it is composite, but ax-1 = 1
mod x for all 1 ≤ a < x. 

– There are infinitely many Charmichael numbers

– But they are very rare
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Miller-Rabin test

Works for all numbers (even Charmichael numbers).
– Checks several randomly chosen bases a

– If it finds out that ax-1 = 1 mod x, it checks whether the 
process found a nontrivial root of 1 (≠ 1,-1). If so, it 
outputs COMPOSITE.

The Miller-Rabin test:
1. Write x-1=2cr for an odd r. set comp=0.

2. For i=1 to T

• Pick random a ∈ [1,x-1]. If gcd(a,x)> 1 
set comp=1.

• Compute y0=a
r mod x, yi=(yi-1)

2 mod x for 
i=1..c. If yc≠1, or ∃i, yi=1, yi-1≠±1, set 
comp=1.

3. If comp=1 return COMPOSITE, else PRIME.
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Miller-Rabin test

• Possible values for the sequence y0=ar, y1=a2r… yc=ax-1
.

• <…,d>, where d≠1, decide COMPOSITE.

• <1,1,…,1>, decide PRIME.

• <..,-1,1,..,1>, decide PRIME.

• <…,d,1,…,1>, where d≠±1, decide COMPOSITE.

– For a composite number x, we denote a base a as a non-
witness if it results in the output being “PRIME”.

• Lemma: if x is an odd composite number then the 
number of non-witnesses is at most x/4. 

• Therefore, for any odd integer x, T trials give the wrong 
answer with probability < (1/4)T.
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Breaking News (some years ago)

• Primes ∈ P

– Agrawal, Kayal, Saxena (2004)
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Integer factorization

• The RSA and Rabin cryptosystems use a modulus N
and are insecure if it is possible to factor N.

• Factorization: given N find all prime factors of N. 

• Factoring is the search problem corresponding to the 
primality testing decision problem.

– Primality testing is easy

– What about factoring? 
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Pollard’s Rho method

• Factoring N

• Trivial algorithm: trial division by all integers < N1/2. 

• Pollard’s rho method:

– O(N1/4) computation. 

– O(1) memory.

– A heuristic algorithm.
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Pollard’s rho method

1. i=1; x1∈[1,n-1]; y=x1;

2. i = i+1.

3. xi = ((xi-1)
2 - 1) mod n.

4. d = gcd(y-xi, n)

5. If d>1 then output d, and stop.

6. If i is a power of 2, then y=xi

7. Goto line 2. 

• xi is a series of numbers in 0..n-1.

• y takes  the values of x1, x2, x4, x8, …, x2^i,… 

• If (y-xi) = 0 mod p, then most likely gcd(y-xi,n)=p.

Always a factor of n
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Pollard’s rho method

• The running time is not guaranteed, but is expected to 
be sqrt(p) ≤ n1/4. 

• The sequence xi is in 1..n.

– xi depends only on xi-1 (xi = ((xi-1)
2 - 1) mod n)

– The sequence is shaped like the letter Rho.

– Assume that fn(x)=x2-1 mod n behaves like a random 
function. Then the tail and the circle are about sqrt(n) long.

• Let x’i = xi  mod p, where p factors n.

• x’i+1 = xi+1  mod p = (xi
2-1 mod n) mod p  =  xi

2-1 mod p  
= (xi’)

2-1 mod p 

• The sequence x’i therefore follows xi, but is in 0..p-1. 
Therefore, its tail and circle are about sqrt(p) long.
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Pollard’s rho method

• The sequence x’i:
– Let t be the first repeated value in x’i
– Let u be the length of the cycle

– ∀i   x’t+i = x’t+i+u  mod p

– Therefore xt+i = xt+i+u mod p

– gcd(xt+i - xt+i+u , n) = cp.

• Once the algorithm saves y=xj  for j>t, it is on the circle. 
If the circle length u is smaller than j, the algorithm 
computes gcd(xj+u-xj, n) and factors n.

• The algorithm fails if
– The cycle and tail are long ⇒ running time is slow. 

– The cycle and tail are of the same length for both p and q.
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Modern factoring algorithms

• The number-theoretic running time function Ln(a,c)

– For a=0, the running time is polynomial in ln(n).

– For a=1, the running time is exponential in ln(n).

– For 0<a<1, the running time is subexponential. 

• Factoring algorithms

– Quadratic field sieve: Ln(1/2, 1)

– General number field sieve: Ln(1/3, 1.9323)

– Elliptic curve method Lp(1/2, 1.41)  (preferable only if 
p<<sqrt(n) )
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Modulus size recommendations

• Factoring algorithms are run on massively distributed 
networks of computers (running in their idle time).

• RSA published a list of factoring challenges. 

• A 512 bit challenge was factored in 1999.

• The largest factored number n=pq. 
– 768 bits (RSA-768)

– Factored on January 7, 2010 using the NFS

• Typical current choices:
– At least 1024-bit RSA moduli should be used

– For better security, longer RSA moduli are used

– For more sensitive applications, key lengths of 2048 bits 
(or higher) are used
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RSA with a modulus with more factors

• The best factoring algorithms:

– General number field sieve (NFS): Ln(1/3, 1.9323)

– Elliptic curve method Lp(1/2, 1.41)

• If n=pq, where |p|=|q|, then the NFS is faster.

– Common parameters: |p|=|q|=512 bits

– Factoring using the NFS is infeasible, but more likely than 
factoring using the elliptic curve method.

• How about using N=pqr, where |p|=|q|=|r|=512?

– The factors are of the same length, so factoring using the 
elliptic curve method is still infeasible. ☺

– The NFS method has to work on a larger modulus ☺

– Decryption time is slower (but not by much). �
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RSA for paranoids

• Suppose N=pq, |p|=500 bits, |q|=4500 bits.

• Factoring is extremely hard.

• Decryption is also very slow. (Encryption is done using a 
short exponent, so it is pretty efficient.)

• However, in most applications RSA is used to transfer 
session keys, which are rather short.

• Assume message length is < 500 bits.

– In the decryption process, it is only required to decrypt the 
message modulo p. (As, or more, efficient, as a 1024 bit n.)

– Encryption must use a slightly longer e. Say, e=20.
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Discrete log algorithms

• Input: (g,y) in a finite group G. Output: x s.t. gx = y in G. 
• Generic vs. special purpose algorithms: generic algorithms do not 

exploit the representation of group elements. 

• Algorithms
– Baby-step giant-step: Generic. |G| can be unknown. Sqrt(|G|) running 

time and memory. 

– Pollard’s rho method: Generic. |G| must be known. Sqrt(|G|) running time 
and O(1) memory. 

– No generic algorithm can do better than O(sqrt(q)), where q is the largest 
prime factor of |G|

– Pohlig-Hellman: Generic. |G| and its factorization must be known. 
O(sqrt(q) ln q), where q is largest prime factor of |G|.

– Therefore for Z*p, p-1 must have a large prime factor. 

– Index calculus algorithm for Z*p: L(1/2, c)

– Number field size for Z*p: L(1/3, 1.923)
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Elliptic Curves

• The best discrete log algorithm which works even if |G| 
can be unknown is the baby-step giant-step algorithm.
– Sqrt(|G|) running time and memory. 

• Other (more efficient) algorithms must know |G|.
– In Zp* we know that | Zp* |=p-1.

• Elliptic curves are groups G where
– The Diffie-Hellman assumption is assumed to hold, and 

therefore we can run DH an ElGamal encryption/sigs.

– |G| is unknown and therefore the best discrete log algorithm 
us pretty slow

– It is therefore believed that a small Elliptic Curve group is as 
secure as larger Zp* group.

– Smaller group -> smaller keys and more efficient operations.
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Baby-step giant-step DL algorithm

• Let t=sqrt(|G|).

• x can be represented as x=ut-v, where u,v < sqrt(|G|).

• The algorithm:

– Giant step: compute the pairs (j, g j·t), for 0 ≤ j ≤ t. Store in 
a table keyed by g j·t.

– Baby step: compute y·gi  for i=0,1,2…, until you hit an item 
(j, g j·t) in the table. x = jt - i.

• Memory and running time are O(sqrt|G|).
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Baby-step giant-step DL algorithm


