Introduction to Cryptography Lecture 11

Benny Pinkas

Certification Authorities (CA)

- A method to bootstrap trust
 - Start by trusting a single party and knowing its public key
 - Use this to establish trust with other parties (and associate them with public keys)
- The Certificate Authority (CA) is trusted party.
 - All users have a copy of the public key of the CA
 - The CA signs Alice's digital certificate. A simplified certificate is of the form (Alice, Alice's public key).

Certification Authorities (CA)

News about CAs used for MiTM attacks.

Revocation

- Revocation is a key component of PKI
 - Each certificate has an expiry date
 - But certificates might get stolen, employees might leave companies, etc.
 - Certificates might therefore need to be revoked before their expiry date
 - New problem: before using a certificate we must verify that it has not been revoked
 - Often the most costly aspect of running a large scale public key infrastructure (PKI)
 - How can this be done efficiently?

Certificate Revocation Lists (CRLs)

- A revocation agency (RA) issues a list of revoked certificates (i.e., "bad" certificates)
 - The list is updated and published regularly (e.g. daily)
 - Before trusting a certificate, users must consult the most recent CRL in addition to checking the expiry date.
- Advantages: simple.
- Drawbacks:
 - Scalability. CRLs can be huge. There is no short proof that a certificate is valid.
 - There is a vulnerability windows between a compromise of certificate and the next publication of a CRL.
 - Need a reliable way of distributing CRLs.
- Improving scalability using "delta CRLs": a CRL that only lists certificates which were revoked since the issuance of a specific, previously issued CRL.

Explicit revocation: OCSP

- OCSP (Online Certificate Status Protocol)
 - RFC 2560, June 1999.
- OCSP can be used in place, or in addition, to CRLs
- Clients send a request for certificate status information.
 - An OCSP server sends back a response of "current", "expired," or "unknown".
 - The response is signed (by the CA, or a Trusted Responder, or an Authorized Responder certified by the CA).
- Provides instantaneous status of certificates
 - Overcomes the chief limitation of CRL: the fact that updates must be frequently downloaded and parsed by clients to keep the list current

Certificate Revocation System (CRS)

- Certificate Revocation System (Micali'96)
- Puts the burden of proof on the certificate holder (who must prove that the certificate is still valid).
- In theory, we could limit the lifetime of certificates to a single day, and require the certificate holder to ask for a new certificate every day.
 - This would result in a high overhead at the CA

Certificate Revocation System (CRS)

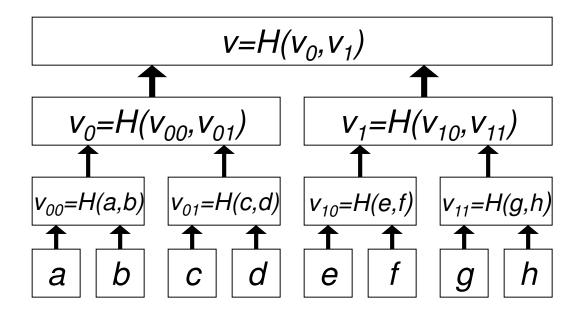
- It is possible to reduce the overhead of the CA by using a hash chain
 - The certificate includes $Y_{365} = f^{365}(Y_0)$. This value is part of the information signed by the CA. f is one-way.
 - On day d,
 - If the certificate is valid, then $Y_{365-d} = f^{365-d}(Y_0)$ is sent by the CA to the certificate holder or to a directory.
 - The certificate receiver uses the daily value $(f^{365-d}(Y_0))$ to verify that the certificate is still valid. (how?)
- Advantage: A short, individual, proof per certificate.
- Disadvantage: Daily overhead, even when a cert is valid.

CA's work

- How can the server can compute $f^{i}(Y_{0})$
- There are two straightforward methods
 - Storing all n values
 - Storing Y_0 and computing $f^i(Y_0)$ on the fly.
- Another option is to store sqrt(n) intermediate points and do sqrt(n) work per computation of each $f^{i}(Y_{0})$
- There are also more advanced methods requiring log(n) storage and O(1) amortized work per computation

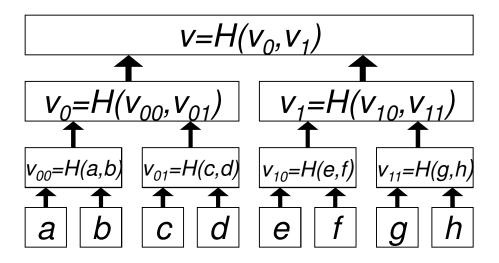
Merkle Hash Tree (will be useful later)

- A method of committing to (by hashing together) n values, $x_1, ..., x_n$, such that
 - The result is a single hash value
 - For any x_i , it is possible to prove that it appeared in the original list, using a proof of length O(log n).



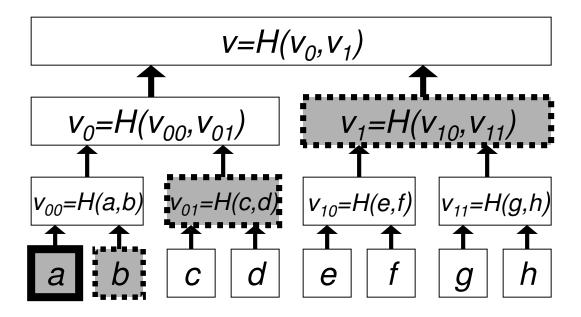
Merkle Hash Tree

- H is a collision intractable hash function
- Any change to a leaf results in a change to the root
- To sign the set of values it is sufficient to sign the root (a single signature instead of *n*).
- How do we verify that an element appeared in the signed set?



Verifying that a appears in the signed set

- Provide a's leaf, and the siblings of the nodes in the path from a to the root. (O(log n) values)
- The verifier can use H to compute the values of the nodes in the path from the leaf to the root.
- It then compares the computed root to the signed value.



Using hash trees to improve the overhead of CRS

- Originally (for a year long certificate)
 - the certificate includes $f^{365}(Y_0)$
 - On day d, certificate holder obtains $f^{365-d}(Y_0)$
 - The certificate receiver computes $f^{365}(Y_0)$ from $f^{365-d}(Y_0)$ by invoking f() d times.
- Slight improvement:
 - The CA assigns a different leaf for every day, constructs a hash tree, and signs the root.
 - On day d, it releases node d and the siblings of the path from it to the root.
 - This is the proof that the certificate is valid on day d
 - The overhead of verification is O(log 365).

Certificate Revocation Tree (CRT) [Kocher]

- (A different usage of a hash tree)
- A CRT is a hash tree with leaves corresponding to statements about ranges of certificates
 - Statements describe regions of certificate ids, in which only the smallest id is revoked.
 - For example, a leaf might read: "if 100 ≤ id <234, then cert is revoked iff id=100".
 - Each certificate matches exactly one statement.
 - The statements are the leaves of a signed hash tree, ordered according to the ranges of certificate values.
 - To examine the state of a certificate we retrieve the statement for the corresponding region.
 - A single hash tree is used for all certs.

Certificate Revocation Tree (CRT)

- Preferred operation mode:
 - Every day the CA constructs an updated tree.
 - The CA signs a statement including the root of the tree and the date.
 - It is Alice's responsibility to retrieve the leaf which shows that her certificate is valid, the route from this leaf to the root, and the CA's signature of the root.
 - To prove the validity of her cert, Alice sends this information.
 - The receiver verifies the value in the leaf, the route to the tree, and the signature.
- Advantage:
 - a short proof for the status of a certificate.
 - The CA does not have to handle individual requests.
- Drawback: the entire hash tree must be updated daily.

SSL/TLS

SSL/TLS

- General structure of secure HTTP connections
 - To connect to a secure web site using SSL or TLS, we send an https:// command
 - The web site sends back a public key⁽¹⁾, and a certificate.
 - Our browser
 - Checks that the certificate belongs to the url we're visiting
 - Checks the expiration date
 - Checks that the certificate is signed by a CA whose public key is known to the browser
 - Checks the signature
 - If everything is fine, it chooses a session key and sends it to the server encrypted with RSA using the server's public key

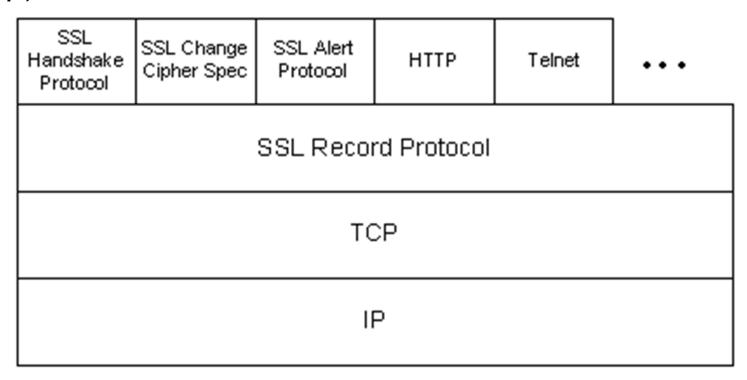
⁽¹⁾ This is a very simplified version of the actual protocol.

SSL/TLS

- SSL (Secure Sockets Layer)
 - SSL v2
 - Released in 1995 with Netscape 1.1
 - A flaw found in the key generation algorithm
 - SSL v3
 - Improved, released in 1996
 - Public design process
- TLS (Transport Layer Security)
 - IETF standard, RFC 2246
- Common browsers support all these protocols

SSL Protocol Stack

- SSL/TLS operates over TCP, which ensures reliable transport.
- Supports any application protocol (usually used with http).



SSL/TLS Overview

- Handshake Protocol establishes a session
 - Agreement on algorithms and security parameters
 - Identity authentication
 - Agreement on a key
 - Report error conditions to each other
- Record Protocol Secures the transferred data
 - Message encryption and authentication
- Alert Protocol Error notification (including "fatal" errors).
- Change Cipher Protocol Activates the pending crypto suite

Simplified SSL Handshake

Server Client I want to talk, ciphers I support, R_C Certificate (PK_{Server}), cipher I choose, R_S $\{S\}_{PKserver}, \{\text{keyed hash of handshake message}\}$ compute compute $K = f(S,R_C,R_S)$ {keyed hash of handshake message} $K = f(S, R_C, R_S)$ Data protected by keys derived from *K*

A typical run of a TLS protocol

- $C \Rightarrow S$
 - ClientHello.protocol.version = "TLS version 1.0"
 - ClientHello.random = T_C , N_C
 - ClientHello.session_id = "NULL"
 - ClientHello.crypto_suite = "RSA: encryption.SHA-1:HMAC"
 - ClientHello.compression method = "NULL"
- $S \Rightarrow C$
 - ServerHello.protocol.version = "TLS version 1.0"
 - ServerHello.random = T_S , N_S
 - ServerHello.session_id = "1234"
 - ServerHello.crypto_suite = "RSA: encryption.SHA-1:HMAC"
 - ServerHello.compression_method = "NULL"
 - ServerCertificate = pointer to server's certificate
 - ServerHelloDone

Some additional issues

- More on $S \Rightarrow C$
 - The ServerHello message can also contain Certificate Request Message
 - I.e., server may request client to send its certificate
 - Two fields: certificate type and acceptable CAs
- Negotiating crypto suites
 - The crypto suite defines the encryption and authentication algorithms and the key lengths to be used.
 - ~30 predefined standard crypto suites
 - Selection (SSL v3): Client proposes a set of suites. Server selects one.

Key generation

- Key computation:
 - The key is generated in two steps:
 - pre-master secret S is exchanged during handshake
 - master secret K is a 48 byte value calculated using premaster secret and the random nonces
- Session vs. Connection: a session is relatively long lived. Multiple TCP connections can be supported under the same SSL/TSL connection.
- For each connection: 6 keys are generated from the master secret K and from the nonces. (For each direction: encryption key, authentication key, IV.)

TLS Record Protocol

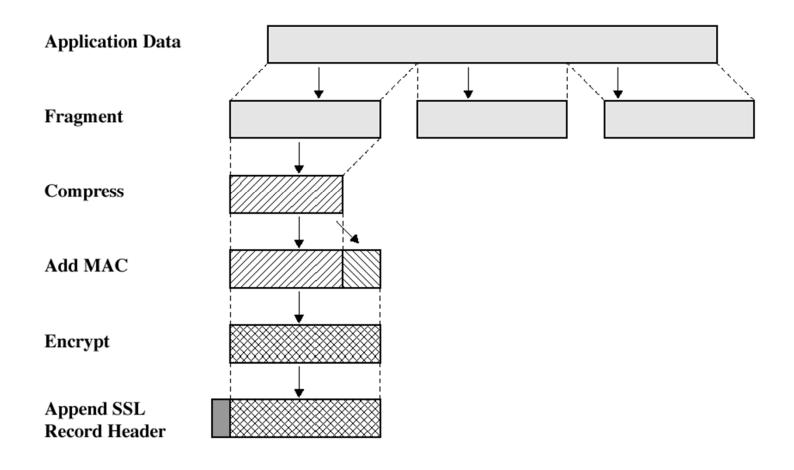


Figure 17.3 SSL Record Protocol Operation

Primality testing

- Why do we need primality testing?
 - Essentially all public key cryptographic algorithms use large prime numbers
 - We therefore need an algorithm for prime number generation
 - Suppose we have an algorithm "Primality<u>Test</u>" with a binary output.
 - We can generate random primes as follows

```
GeneratePrime(a,b)
```

- 1. Choose random number $x \in [a, b]$
- 2. If PrimalityTest(x) then output "x is prime"; otherwise goto line 1.

Density of prime numbers

- How long will GeneratePrime run?
- Let $\pi(n)$ specify number of primes $\leq n$.
- Prime number theorem:
 - $-\pi(n)$ goes to n / ln n as n goes to infinity.
- Pretty accurate even for small n (e.g. for n=2³⁰ it is off by 6%).
- Corollary: a random number in [1,n] is prime with probability 1/ln n. (e.g. for $n=2^{512}$, probability is 1/355).
 - The GeneratePrime algorithm is expected to take In n rounds.
 - If we skip even numbers, we cut running time by ½.

Primality testing

- Primality testing is a decision problem: "is x prime or composite?"
- Different than the search problem "find all prime factors of x" ("factor x").
- In this case, the decision problem has an efficient solution while the search problem does not.
- First algorithm for primality testing: Trial division
 - Try to divide x by every prime integer smaller than \sqrt{x} (sqrt(x)).
 - Infeasible for large x.

Fermat's test

- Fermat's theorem: if p is prime then for all $1 \le a < p$ it holds that $a^{p-1} = 1 \mod p$.
- If we can find an a s.t $a^{x-1} \neq 1 \mod x$, then x is surely composite.
 - Surprisingly, the converse is almost always true, and for a large percentage of the choices of a.
 - Suppose we check only for a=2.

```
• If 2^{x-1} != 1 mod x

-Then return COMPOSITE /for sure

-Otherwise, return PRIME /we hope
```

– How accurate is this program?

Fermat's test

- Surprisingly, this test is almost always right
 - Wrong for only 22 values of x smaller than 100,000
 - Probability of error goes down to 0 as x grows
 - For |x|=512 bits, probability of error is $< 10^{-20} \approx 2^{-66}$
 - For |x|=1024 bits, probability of error is $< 10^{-41} \approx 2^{-136}$
- The test is therefore sufficient for randomly chosen candidate primes
- But we need a better test if x is not chosen at random
- Cannot eliminate errors by checking for bases ≠ 2
 - x is a Charmichael number if it is composite, but $a^{x-1} = 1$ mod x for all $1 \le a < x$.
 - There are infinitely many Charmichael numbers
 - But they are very rare

Miller-Rabin test

Works for all numbers (even Charmichael numbers).

- Checks several randomly chosen bases a
- If it finds out that $a^{x-1} = 1 \mod x$, it checks whether the process found a nontrivial root of 1 ($\neq 1,-1$). If so, it outputs COMPOSITE.

The Miller-Rabin test:

- 1. Write $x-1=2^{c}r$ for an odd r. set comp=0.
- 2. For i=1 to T
 - Pick random $a \in [1, x-1]$. If gcd(a, x) > 1 set comp=1.
 - Compute $y_0=a^r \mod x$, $y_i=(y_{i-1})^2 \mod x$ for i=1..c. If $y_c\neq 1$, or $\exists i$, $y_i=1$, $y_{i-1}\neq \pm 1$, set comp=1.
- 3. If comp=1 return COMPOSITE, else PRIME.

Miller-Rabin test

- Possible values for the sequence $y_0 = a^r$, $y_1 = a^{2r}$... $y_c = a^{x-1}$
 - <...,d>, where d≠1, decide COMPOSITE.
 - <1,1,...,1>, decide PRIME.
 - <..,-1,1,..,1>, decide PRIME.
 - <...,d,1,...,1>, where $d\neq \pm 1$, decide COMPOSITE.
 - For a composite number x, we denote a base a as a nonwitness if it results in the output being "PRIME".
- Lemma: if x is an odd composite number then the number of non-witnesses is at most x/4.
- Therefore, for any odd integer x, T trials give the wrong answer with probability $< (1/4)^T$.

Breaking News (some years ago)

- Primes ∈ P
 - Agrawal, Kayal, Saxena (2004)

Integer factorization

- The RSA and Rabin cryptosystems use a modulus N
 and are insecure if it is possible to factor N.
- Factorization: given N find all prime factors of N.
- Factoring is the search problem corresponding to the primality testing decision problem.
 - Primality testing is easy
 - What about factoring?

Pollard's Rho method

- Factoring N
- Trivial algorithm: trial division by all integers $< N^{1/2}$.
- Pollard's rho method:
 - $O(N^{1/4})$ computation.
 - O(1) memory.

January 7, 2013

A heuristic algorithm.

Pollard's rho method

```
1. i=1; x_1 \in [1, n-1]; y=x_1;

2. i = i+1.

3. x_i = ((x_{i-1})^2 - 1) \mod n.

4. d = \gcd(y-x_i, n) Always a factor of n.

5. If d>1 then output d, and stop.

6. If i is a power of 2, then y=x_i.

7. Goto line 2.
```

- x_i is a series of numbers in 0..n-1.
- y takes the values of $x_1, x_2, x_4, x_8, \dots, x_{2^{n_i}},\dots$
- If $(y-x_i) = 0 \mod p$, then most likely $gcd(y-x_i,n)=p$.

Pollard's rho method

- The running time is not guaranteed, but is expected to be $sqrt(p) \le n^{1/4}$.
- The sequence x_i is in 1..n.
 - $-x_{i}$ depends only on x_{i-1} $(x_{i} = ((x_{i-1})^{2} 1) \mod n)$
 - The sequence is shaped like the letter Rho.
 - Assume that $f_n(x)=x^2-1 \mod n$ behaves like a random function. Then the tail and the circle are about sqrt(n) long.
- Let $x'_i = x_i \mod p$, where p factors n.
- $x'_{i+1} = x_{i+1} \mod p = (x_i^2 1 \mod n) \mod p = x_i^2 1 \mod p$ = $(x_i')^2 - 1 \mod p$
- The sequence x_i therefore follows x_i , but is in 0..p-1. Therefore, its tail and circle are about sqrt(p) long.

Pollard's rho method

- The sequence x_i :
 - Let t be the first repeated value in x_i'
 - Let u be the length of the cycle
 - $\forall i \quad x'_{t+i} = x'_{t+i+u} \mod p$
 - Therefore $X_{t+i} = X_{t+i+1} \mod p$
 - $gcd(x_{t+i} x_{t+i+u}, n) = cp.$
- Once the algorithm saves $y=x_j$ for j>t, it is on the circle. If the circle length u is smaller than j, the algorithm computes $gcd(x_{i+u}-x_j, n)$ and factors n.
- The algorithm fails if
 - The cycle and tail are long \Rightarrow running time is slow.
 - The cycle and tail are of the same length for both p and q.

Modern factoring algorithms

• The number-theoretic running time function $L_n(a,c)$

$$L_n(a,c) = e^{c(\ln n)^a (\ln \ln n)^{1-a}}$$

- For a=0, the running time is polynomial in ln(n).
- For a=1, the running time is exponential in ln(n).
- For 0<a<1, the running time is subexponential.
- Factoring algorithms
 - Quadratic field sieve: $L_n(1/2, 1)$
 - General number field sieve: L_n(1/3, 1.9323)
 - Elliptic curve method $L_p(1/2, 1.41)$ (preferable only if p << sqrt(n))

Modulus size recommendations

- Factoring algorithms are run on massively distributed networks of computers (running in their idle time).
- RSA published a list of factoring challenges.
- A 512 bit challenge was factored in 1999.
- The largest factored number n=pq.
 - 768 bits (RSA-768)
 - Factored on January 7, 2010 using the NFS
- Typical current choices:
 - At least 1024-bit RSA moduli should be used
 - For better security, longer RSA moduli are used
 - For more sensitive applications, key lengths of 2048 bits (or higher) are used

RSA with a modulus with more factors

- The best factoring algorithms:
 - General number field sieve (NFS): L_n(1/3, 1.9323)
 - Elliptic curve method $L_p(1/2, 1.41)$
- If n=pq, where |p|=|q|, then the NFS is faster.
 - Common parameters: |p|=|q|=512 bits
 - Factoring using the NFS is infeasible, but more likely than factoring using the elliptic curve method.
- How about using N=pqr, where |p|=|q|=|r|=512?
 - The factors are of the same length, so factoring using the elliptic curve method is still infeasible. ☺
 - The NFS method has to work on a larger modulus ©
 - Decryption time is slower (but not by much). ☺

RSA for paranoids

- Suppose *N=pq*, *|p|=500* bits, *|q|=4500* bits.
- Factoring is extremely hard.
- Decryption is also very slow. (Encryption is done using a short exponent, so it is pretty efficient.)
- However, in most applications RSA is used to transfer session keys, which are rather short.
- Assume message length is < 500 bits.
 - In the decryption process, it is only required to decrypt the message modulo p. (As, or more, efficient, as a 1024 bit n.)
 - Encryption must use a slightly longer e. Say, e=20.

Discrete log algorithms

- Input: (g,y) in a finite group G. Output: x s.t. $g^x = y$ in G.
- Generic vs. special purpose algorithms: generic algorithms do not exploit the representation of group elements.

Algorithms

- Baby-step giant-step: Generic. |G| can be unknown. Sqrt(|G|) running time and memory.
- Pollard's rho method: Generic. |G| must be known. Sqrt(|G|) running time and O(1) memory.
- No generic algorithm can do better than O(sqrt(q)), where q is the largest prime factor of |G|
- Pohlig-Hellman: Generic. |G| and its factorization must be known.
 O(sqrt(q) In q), where q is largest prime factor of |G|.
- Therefore for Z_p^* , p-1 must have a large prime factor.
- Index calculus algorithm for Z*_p: L(1/2, c)
- Number field size for Z_p^* : L(1/3, 1.923)

Elliptic Curves

- The best discrete log algorithm which works even if |G| can be unknown is the baby-step giant-step algorithm.
 - Sqrt(|G|) running time and memory.
- Other (more efficient) algorithms must know |G|.
 - In Z_p^* we know that $|Z_p^*|=p-1$.
- Elliptic curves are groups G where
 - The Diffie-Hellman assumption is assumed to hold, and therefore we can run DH an ElGamal encryption/sigs.
 - |G| is unknown and therefore the best discrete log algorithm us pretty slow
 - It is therefore believed that a small Elliptic Curve group is as secure as larger Z_p* group.
 - Smaller group -> smaller keys and more efficient operations.

Baby-step giant-step DL algorithm

- Let t=sqrt(|G|).
- x can be represented as x=ut-v, where u,v < sqrt(|G|).
- The algorithm:
 - Giant step: compute the pairs $(j, g^{j \cdot t})$, for $0 \le j \le t$. Store in a table keyed by $g^{j \cdot t}$.
 - Baby step: compute $y \cdot g^i$ for i=0,1,2..., until you hit an item $(j, g^{j \cdot t})$ in the table. x = jt i.
- Memory and running time are O(sqrt|G|).

Baby-step giant-step DL algorithm

