Introduction to Cryptography

Lecture 2

Benny Pinkas

Perfect Cipher

- What type of security would we like to achieve?
- In an "ideal" world, the message will be delivered in a magical way, out of the reach of the adversary
 - An encryption system will therefore be called secure if no adversary can learn any partial information about the plaintext from the ciphertext.
- Definition: a perfect cipher
 - Pr(plaintext = P | ciphertext = C) = Pr(plaintext = P)
 - The ciphertext does not reveal any information about the plaintext
 - Sometimes called "semantic security".

- "Perfect cipher" is a definition of a security property
- In the previous lecture, we saw an example of a perfect cipher, the one-time pad.
- When we want to discuss or prove general properties of perfect ciphers, we must refer to every encryption scheme that satisfies the definition.
 - Not only the one-time pad.

Perfect Ciphers

- A simple criteria for perfect ciphers. :
- The cipher is perfect if, and only if,

```
\forall m<sub>1</sub>,m<sub>2</sub>\in M, \forallcipher c,

Pr(Enc(m_1)=c) = Pr(Enc(m_2)=c).

(one direction was proved in the recitation)
```

- This criterion is called "indistinguishability".
- Idea: Regardless of the plaintext, the adversary sees the same distribution of ciphertexts and cannot distinguish between encryptions of different plaintexts.
- Indistinguishability is equivalent to semantic security.

Proof

- Note that the proof cannot assume that the cipher is the one-time-pad
- We can only assume that Pr(plaintext = P | ciphertext = C) = Pr(plaintext = P)

Proof (of one direction; the other direction was proved in the recitation)

- Perfect security:
 - ∀ m∈M, ∀cipher c, Pr(plaintext=m / ciphertext=c) =
 Pr(plaintext=m).
- Indistinguishability criterion:
 - $\forall m_1, m_2 \in M, \forall cipher c, Pr(Enc(m_1) = c) = Pr(Enc(m_2) = c).$
- Perfect security ⇒ Indistinguishability criterion
 Pr(Enc(m₁)=c) = Pr(ciphertext=c / plaintext=m₁)
 - = Pr(ciphertext=c and plaintext=m₁) / Pr(plaintext=m₁)
 - = Pr(plaintext=m₁ / ciphertext=c) · Pr(ciphertext=c) /
 Pr(plaintext=m₁)
 - = 1 · Pr(ciphertext=c) / 1 = Pr(ciphertext=c)

Size of key space

- Perfect security holds even against an adversary that has unlimited computational powers. It is also called "information theoretic security" or "unconditional security".
- However, the key size is inefficient.
- Theorem: For a perfect encryption scheme, the number of possible keys is at least the number of possible plaintexts.
- Proof:
 - Given in class last week
- Corollary: Key length of one-time pad is optimal

Computational security

- The computation approach to security is more relaxed
 - It only worries about polynomial adversaries
 - Adversaries may succeed with very small probability
- Why are these relaxations required?
 - We want the number of possible keys to be smaller than the number of possible plaintexts, namely |K|<|M|.
 - (brute force attack) Given a ciphertext, an adversary can try to decrypt it with all possible keys. Since |K|<|M|, the results cannot contain all messages and this leaks some information about the plaintext.
 - (key guess) Given a ciphertext c and a plaintext m, the adversary can guess at random a key k and check if $E_k(m)=c$. If this holds, the adversary can decrypt other ciphertexts which use k.

Computational security

- How this works
 - Define a family of cryptosystems, based on a parameter n (often the key length).
 - Each choice of n defines a specific cryptosystem.
 - Encryption and decryption run in time polynomial in n.
 - "negligible probability" = smaller than any inverse polynomial in n. (see below)
 - The system is secure if any polynomial time adversary has a negligible probability of success.

Negligible success probability

- A function f() is *negligible* if \forall polynomial p(), \exists N, s.t. \forall n>N it holds that f(n) < 1/p(n).
- The functions 2⁻ⁿ, 2^{-n^{0.5}}, and 2^{-log^2(n)} are all negligible.
 - -2^{-n} is smaller than 10^{-6} for all n>20
 - 2⁻ⁿ is smaller than n⁻⁴ for all n>16
 - $-2^{-n^{0.5}}$ is smaller than 10^{-6} for all n>400
 - $-2^{-n^{0.5}}$ is smaller than n^{-4} for all n>1900
 - $-2^{-log^2(n)}$ is smaller than 10^{-6} for all $n > \approx 10^3$
 - $-2^{-\log^2(n)}$ is smaller than n^{-4} for all n>16

An example

- A cryptosystem
 - Encryption and decryption take 2²⁰n² cycles.
 - An adversary (who doesn't have the key) that runs 10⁸n⁴ cycles, decrypts with probability at most 2²⁰2⁻ⁿ
- Suppose n=50, and 1Ghz computer
 - Encryption and decryption take 2.5 seconds.
 - Adversary runs 1 week and decrypts with probability 2⁻³⁰
- Suppose we have 16Ghz computers, and set n=100.
 - Encryption and decryption take 0.625 seconds.
 - Adversary runs 1 week and decrypts with probability 2-80.

Negligible success probability

- In practice
 - An event that happens with probability 2⁻³⁰ is non-negligible (likely to happen over 1GB of data)
 - An event that happens with probability 2⁻⁸⁰ is negligible

Computational security

- We should only worry about polynomial adversaries
- Idea: Generate a string which "looks random" to any polynomial adversary. Use it instead of a OTP.
- What does it mean for a string to look random?
 - Fraction of bits set to 1 is ≈ 50%
 - Longest run of 0's is of length ≈ log(n),
 - Is that sufficient?...
- Enumerating a set of statistical tests that the string should pass is not enough.

Computational security – Pseudo-randomness

- Pseudo-random string:
 - No efficient observer can distinguish it from a uniformly random string of the same length
 - It "looks" random as long as the observer runs in polynomial time
- Motivation: Indistinguishable objects are equivalent
 - So, can use the pseudo-random string instead of a random one
- The foundation of modern cryptography
- (Note that no fixed string can be pseudo-random, or random. We consider a distribution of strings. A distribution of strings of length m is pseudo-random if it is indistinguishable from the uniform distribution of m bit strings.)

Pseudo-random generators

- Pseudo-random generator (PRG)
 - $G: \{0,1\}^n \Rightarrow \{0,1\}^m$
 - A deterministic function, computable in polynomial time.
 - It must hold that m > n. Let us assume m=2n.
 - The function has only 2ⁿ possible outputs.
- Pseudo-random property:
 - If we choose inputs $s \in \mathbb{R}\{0,1\}^n$, $u \in \mathbb{R}\{0,1\}^m$, (in other words, choose s and u uniformly at random), then no polynomial adversary can distinguish between G(s) and u.
 - In other words, it holds \forall <u>polynomial time</u> adversary D, (whose output is 0/1) that D(G(s)) is indistinguishable from D(u))
 - | Pr[D(G(s))=1] Pr[D(u)=1] | is negligible.

Pseudo-random generator

Properties of PRGs

- How can the adversary distinguish the PRG's output from a random one? (Exhaustive search?)
- Claim (to be proved in the recitation): If G is a PRG then it passes all statistical tests (e.g., the probability that the number of 1 bits in the PRG's output is < |m|/3 is negligible).

Properties of PRGs

- The value | Pr[D(G(s))=1] Pr[D(u)=1] | is called the advantage of the algorithm D.
- The PRG is secure if ∀poly D the advantage is negligible.
- Can G(seed) be such that the xor of all its bits is always 1?
- Can the output of G contain its input?
 - G(seed)= seed | G'(seed)

Properties of PRGs

- The value | Pr[D(G(s))=1] Pr[D(u)=1] | is called the advantage of the algorithm D.
- The PRG is secure if ∀poly D the advantage is negligible.
- Can G(seed) be such that the xor of all its bits is always 1?
- Can the output of G contain its input?
 - G(seed)= seed | G'(seed)
- Implementation of PRGs:
 - Based on mathematical/computational assumptions
 - Ad-hoc constructions

Predictability

- The output of a PRG is unpredictable
- There is no efficient alg A() that given the first *j* bits of G() can predict the next bit with non-negligible prob.
- Proof:
 - Suppose that \exists poly A() s.t. $\mathsf{Prob}_{\mathsf{seed}}(\mathsf{A}(\mathsf{G}(\mathsf{seed})|_{1...j}) = \mathsf{G}(\mathsf{seed})|_{\mathsf{i}+1}$) is ½+ δ , where δ is non-negligible.
 - Define a distinguisher, as D(X)=1 iff $X|_{j+1}=A(X|_{1...j})$.
 - If X is uniform, then $Prob(D(X)=1) = \frac{1}{2}$.
 - If X=G(seed) then $Prob(D(X)=1) = \frac{1}{2} + \delta$.
 - The advantage of D() is δ and is non-negligible.

Using a PRG for Encryption

- Replace the one-time-pad with the output of the PRG
- Key: a (short) random key $k \in \{0,1\}^{|k|}$.
- Message $m = m_1, \dots, m_{|m|}$.
- Use a PRG G: $\{0,1\}^{|k|} \to \{0,1\}^{|m|}$
- Key generation: choose $k \in \{0,1\}^{|k|}$ uniformly at random.
- Encryption:
 - Use the output of the PRG as a one-time pad. Namely,
 - Generate $G(k) = g_1, ..., g_{|m|}$
 - Ciphertext C = $g_1 \oplus m_1, ..., g_{|m|} \oplus m_{|m|}$
- This is an example of a stream cipher.

Definitions of security of encryption against polynomial adversaries

- Perfect security (previous equivalent defs):
 - (indistinguishability) \forall $m_0, m_1 \in M$, \forall c, the probability that c is an encryption of m_0 is equal to the probability that c is an encryption of m_1 .
 - (semantic security) The distribution of m given the encryption of m is the same as the a-priori distribution of m.
- Security of pseudo-random encryption (equivalent defs):
 - (indistinguishability) \forall m₀,m₁∈M, no *polynomial time* adversary D can distinguish between the encryptions of m₀ and of m₁. Namely, $Pr[D(E(m_0))=1] \approx Pr[D(E(m_1))=1)$
 - (semantic security) \forall m₀,m₁ \in M, a polynomial time adversary which is given E(m_b), where b \in _r{0,1}, succeeds in finding b with probability \approx ½.

Proofs by reduction

- We don't know how to prove unconditional proofs of computational security; we must rely on assumptions.
 - We can simply assume that the encryption scheme is secure. This is bad.

Proofs by reduction

- We don't know how to prove unconditional proofs of computational security; we must rely on assumptions.
 - We can simply assume that the encryption scheme is secure. This is bad.
 - Instead, we will assume that some low-level problem is hard to solve, and then prove that the cryptosystem is secure under this assumption.
 - (For example, the assumption might be that a certain function G is a pseudo-random generator.)
 - Advantages of this approach:
 - It is easier to design a low-level function.
 - There are (very few) "established" assumptions in cryptography, and people prove the security of cryptosystem based on these assumptions.

Using a PRG for Encryption: Security

- The output of a pseudo-random generator is used for the encryption.
- Proof of security by reduction:
 - The assumption is that the PRG is strong (its output is indistinguishable from random).
 - We want to prove that in this case the encryption is strong (it satisfies the indistinguishability definition above).
 - In other words, prove that if one can break the security of the encryption (distinguish between encryptions of m₀ and of m₁), then it is also possible to break the security of the PRG (distinguish its output from random).

Proof of Security

- Suppose that there is a distinguisher algorithm D'() which distinguishes between (1) and (2) (for now, assume that D' always succeeds)
- We know that no D'() can distinguish between (3) and (4)
- We are given a string S and need to decide whether it is drawn from a pseudorandom distribution or from a uniformly random distribution
- We will use S as a pad to encrypt a message.

Proof of Security

- Recall: we assume that there is a D'() which always distinguishes between (1) and (2). D' cannot distinguish between (3) and (4) with probability $> \frac{1}{2}$.
- Choose a random $b \in \{0,1\}$ and compute $m_b \oplus S$. Give the result to D'().
 - if S was chosen uniformly, D'() must distinguish (3) from (4). (prob=1/2)
 - if S is pseudorandom, D'() must distinguish (1) from (2). (prob=1)
- If D'() outputs b then declare "pseudorandom", otherwise declare "random".
 - if S was chosen uniformly we output "pseudorandom" with prob ½.
 - if S is pseudorandom we output "pseudorandom" with prob 1.

Proof of Security

- Recall: we assume that there is a D'() which distinguishes between (1) and (2) with prob $\frac{1}{2}+\delta$. D' cannot distinguish between (3) and (4) with probability> $\frac{1}{2}$
- Choose a random $b \in \{0,1\}$ and compute $m_b \oplus S$. Give the result to D'().
 - if S was chosen uniformly, D'() must distinguish (3) from (4). (prob=1/2)
 - if S is pseudorandom, D'() must distinguish (1) from (2). (prob= $\frac{1}{2}+\delta$)
- If D'() outputs b then declare "pseudorandom", otherwise declare "random".
 - if S was chosen uniformly we output "pseudorandom" with prob ½.
 - if S is pseudorandom we output "pseudorandom" with prob $\frac{1}{2}+\delta$.

ADD MY USUAL BLOCK DIAGRAM

Stream ciphers

- Stream ciphers are based on pseudo-random generators.
 - Usually used for encryption in the same way as OTP
- Examples: A5, SEAL, RC4.
 - Very fast implementations.
 - RC4 is popular and secure when used correctly, but it was shown that its first output bytes are biased. This resulted in breaking WEP encryption in 802.11.
- Some technical issues:
 - Stream ciphers require synchronization (for example, if some packets are lost in transit).