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Block Ciphers

• Plaintexts, ciphertexts of fixed length, |m|. 
Usually, |m|=64 or |m|=128 bits.

• The encryption algorithm Ek is a permutation
over {0,1}|m|, and the decryption Dk is its 
inverse. (They are not permutations of the bit 
order, but rather of the entire string.)

• Ideally, use a random permutation.

– Can only be implemented using a table with 
2|m| entries �

• Instead, use a pseudo-random permutation, 
keyed by a key k.

– Implemented by a computer program whose 
input is m,k.

• We learned last week how to use a block cipher for 
encrypting messages longer than the block size.

m1,…,m|m|

Block cipher

c1,…,c|m|



Block ciphers or stream ciphers?
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AMD Opteron,   2.2 GHz     ( Linux)

Cipher Block/key size Speed  (MB/sec)

RC4 126

Salsa20/12 643

Sosemanuk 727

3DES 64/168 13

AES-128 128/128 109

b
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s
tre

a
m

Performance: Crypto++  5.6.0      [ Wei Dai ]

Slide taken from Dan Boneh
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Pseudo-random functions (PRFs)

• F : {0,1}* × {0,1}* → {0,1}*

– The first input is the key, and once chosen it is kept fixed.

– For simplicity, assume F : {0,1}n × {0,1}n → {0,1}n

– F(k,x) is written as Fk(x)

• F is pseudo-random if Fk() (where k is chosen uniformly at random) is 
indistinguishable (to a polynomial distinguisher D) from a function f
chosen at random from all functions mapping {0,1}n to {0,1}n

– There are 2n choices of Fk, whereas there are (2n)2n
choices for f.

– The distinguisher D’s task:

• We choose a function G.  With probability ½ G is Fk (where k ∈R

{0,1}n), and with probability ½ it is a random function f.

• D can compute G(x1),G(x2),… for any x1,x2,… it chooses.

• D must say if G=Fk or G=f.

• Fk is pseudo-random if D succeeds with prob ½+negligible..
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Pseudo-random permutations (PRPs)

• Fk(x) is a keyed permutation if for every choice of k,   
Fk() is one-to-one.

– Note that in this case Fk(x) has an inverse, namely for 
every y there is exactly one x for which Fk(x)=y.

• Fk(x) is a pseudo-random permutation if

– It is a keyed permutation

– It is indistinguishable (to a polynomial distinguisher D) from a 
permutation f chosen at random from all permutations 
mapping {0,1}n to {0,1}n

.

– 2n possible values for Fk

– (2n)! possible values for a random permutation

– It is known how to construct PRPs from PRFs
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Block ciphers

• A block cipher is a function Fk(x) with a key k and an |m| bit 
input x, which has an |m| bit output.

– Fk(x) is a keyed permutation

– When analyzing security we assume it to be a PRP (Pseudo-
Random Permutation) 

• How can we encrypt plaintexts longer than |m|?

• Different modes of operation were designed for this task.

– Discussed last week.
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Practical design of Block Ciphers

• Recall that as with prgs, the design of a block cipher that is 
provably secure without any assumptions implies P!=NP.

• The design of block ciphers is therefore more an engineering 
challenge. Based on experience and public scrutiny.

– It is often based on combining together simple building blocks, which 
support the following principles:

– “Diffusion” (bit shuffling): each intermediate/output bit is affected by 
many input bits

– “Confusion”: avoid structural relationships (and in particular, linear 
relationships) between bits

• Cascaded (round) design: the encryption algorithm is 
composed of iterative applications of a simple round
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Confusion-Diffusion and Substitution-Permutation 
Networks

• Construct a PRP for a large block using PRPs for small blocks
• Divide the input to small parts, and apply rounds:

– Feed the parts through PRPs (“confusion”)

– Mix the parts (“diffusion”)

– Repeat

• Why both confusion and diffusion are necessary?
• Design musts: Avalanche effect. Using reversible s-boxes.
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AES (Advanced Encryption Standard)

• Design initiated in 1997 by NIST

– Goals: improve security and software efficiency of DES 

– 15 submissions, several rounds of public analysis

– The winning algorithm: Rijndael

• Input block length: 128 bits

• Key length: 128, 192 or 256 bits

• Multiple rounds (10, 12 or 14), but does not use a 
Feistel network
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Rijndael animation



AES

• The S-boxes (SubBytes) are the only non-linear 
component of AES

– ShiftRows mixes data in byte level

– MixColumns mixes blocks of four bytes

• Software implementation

– A straightforward implementation is well suite for 8bit 
processors, but does not fully utilize 32b/64b architectures

– A 32 bit implementation can combine SubBytes, 
ShiftRows and MixColumns into 16 lookups in tables of 
256 32-bit entries

• Hardware implementation: AES is implemented using 
machine instruction in new Intel processors. 
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AES instructions in Intel Westmere:

• aesenc,  aesenclast:    do one round of AES

• aeskeygenassist:    performs AES key expansion

• Implement AES by doing aeskeygenassist + 9 x 

aesenc + aesenclast

• Claim  14 x speed-up over OpenSSL on same 
hardware 

• Similar instructions on AMD Bulldozer 

Slide taken from Dan Boneh
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Reversible s-boxes

• Substitution-Permutation networks must use reversible 
s-boxes

– Allow for easy decryption

• However, we want the block cipher to be “as random as 
possible”

– s-boxes need to have some structure to be reversible

– Better use non-invertible s-boxes

• Enter Feistel networks

– A round-based block-cipher which uses s-boxes which are 
not necessarily reversible

– Namely, building an invertible function (permutation) from 
a non-invertible function.
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Feistel Networks

• Encryption:
• Input: P = L i-1 | R i-1   . |L i-1|=|R i-1|

– L i = R i-1
– R i = L i-1 ⊕ F(K i, R i-1)

• Decryption?

• No matter which function is used 
as F, we obtain a permutation 
(i.e., F is reversible even if f is not).

• The same code/circuit, with keys 
in reverse order, can be used for 
decryption.

• Theoretical result [LubRac]: If f is 
a pseudo-random function then a  
4 rounds Feistel network gives a 
pseudo-random permutation
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DES  (Data Encryption Standard)

• A Feistel network encryption algorithm:
– How many rounds?
– How are the round keys generated?
– What is F?

• DES (Data Encryption Standard)
– Designed by IBM and the NSA, 1977.
– 64 bit input and output
– 56 bit key
– 16 round Feistel network
– Each round key is a 48 bit subset of the key

• Throughput ≈ software: 10Mb/sec, hardware: 1Gb/sec 
(in 1991!).
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Security of DES

• Criticized for unpublished design decisions (designers 
did not want to disclose differential cryptanalysis).

• Very secure – the best attack in practice is brute force
– 2006: $1 million search machine: 30 seconds

• cost per key: less than $1

– •2006: 1000 PCs at night: 1 month
• Cost per key: essentially 0 (+ some patience)

• Some theoretical attacks were discovered in the 90s:
– Differential cryptanalysis
– Linear cryptanalysis: requires about 240 known plaintexts

• The use of DES is not recommend since 2004 , but 3-
DES is still recommended for use.
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Iterated ciphers

• Suppose that Ek is a good cipher, with a key of length k 
bits and plaintext/ciphertext of length n.

– The best attack on Ek is a brute force attack with has O(1) 
plaintext/ciphertext  pairs, and goes over all 2k possible 
keys searching for the one which results in these pairs.

• New technological advances make it possible to run 
this brute force exhaustive search attack. What shall we 
do?

– Design a new cipher with a longer key.

– Encrypt messages using two keys k1,k2, and the 
encryption function Ek2(Ek1()). Hoping that the best brute 
force attack would take (2k)2=22k time.
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Iterated ciphers – what can go wrong?

• If encryption is closed under composition, namely for all 
k1,k2 there is a k3 such that Ek2(Ek1())=Ek3(), then we 
gain nothing.

– Could just exhaustively search for k3, instead of separately 
searching for  k1 and k2.

– Substitution ciphers definitely have this property (in fact, 
they are a permutation group and therefore closed under 
composition).

– It was suspected that DES is a group under composition. 
This assumption was refuted only in 1992.
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Iterated Ciphers  - Double DES

• DES is out of date due to brute force attacks on its 
short key (56 bits)

• Why not apply DES twice with two keys?

– Double DES: DES k1,k2 = Ek2(Ek1(m))

– Key length: 112 bits

• But, double DES is susceptible to a meet-in-the-middle
attack, requiring ≈ 256 operations and storage.

– Compared to brute a force attack, requiring 2112 operations 
and O(1) storage.
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Meet-in-the-middle attack

• Meet-in-the-middle attack
– c = Ek2(Ek1(m))
– Dk2 (c) =  Ek1(m)

• The attack:
– Input: (m,c) for which c = Ek2(Ek1(m))
– For every possible value of k1, generate and store Ek1(m).
– For every possible value of k2, generate and store Dk2(c).
– Match k1 and k2 for which Ek1(m) = Dk2(c).
– Might obtain several options for (k1,k2). Check them or 

repeat the process again with a new (m,c) pair (see next slide)

• The attack is applicable to any iterated cipher. Running 
time and memory are O(2|k|), where |k| is the key size.
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Meet-in-the-middle attack: how many pairs to check?

• The plaintext and the ciphertext are 64 bits long
• The key is 56 bits long

• Suppose that we are given one plaintext-ciphertext pair (m,c)
– The attack looks for k1,k2, such that Dk2 (c) =  Ek1(m)
– The correct values of k1,k2 satisfy this equality
– There are 2112 (actually 2112-1) other values for k1,k2.
– Each one of these satisfies the equalities with probability 2-64

– We therefore expect to have 2112-64=248 candidates for k1,k2.

• Suppose that we are given two pairs (m,c), (m’,c’)
– The correct values of k1,k2 satisfy both equalities
– There are 2112 (actually 2112-1) other values for k1,k2.
– Each one of these satisfies the equalities with probability 2-128

– We therefore expect to have 2112-128<1 false candidates for k1,k2.
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Triple DES

• 3DES k1,k2,k3 = Ek3(Dk2(Ek1(m))

• Two-key-3DES k1,k2 = Ek1(Dk2(Ek1(m))

• Why use Enc(Dec(Enc( ))) ?
– Backward compatibility: setting k1=k2 is compatible with single key 

DES

• Two-key-3DES (key length is only 112 bits)
– There is an attack which requires 256 work and memory, but needs 

also 256 encryptions of chosen plaintexts. Therefore not practical.

– Without chosen plaintext, best attack needs 2112 work and memory.

– Why isn’t it better to use 3DES with three keys? There is a meet-in-
the-middle attack against three keys with 2112 operations

• 3DES is widely used. Less efficient than DES.
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Internals of  DES

Initial permutation of bit 
locations:

- not secret

- makes implementations

in software less efficient
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DES F functions

Expansion

to 48 bits
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The S-boxes

• Very careful design (it is now known that random 
choices for the S-boxes result in weak encryption).

• Each s-box maps 6 bits to 4 bits:

– A 4×16 table of 4-bit entries.

– Bits 1 and 6 choose the row, and bits 2-5 choose column.

– Each row is a permutation of the values 0,1,…,15.

• Therefore, given an output there are exactly 4 options for the 
input

– Curcial property: Changing one input bit changes at least 
two output bits ⇒ avalanche effect.
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Differential Cryptanalysis of DES

S-boxes

DES diagram:
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Differential Cryptanalysis [Biham-Shamir 1990]

• The first attack to reduce the overhead of breaking DES 
to below exhaustive search

• Very powerful when applied to other encryption 
algorithms

• Depends on the structure of the encryption algorithm
• Observation: all operations except for the s-boxes are 

linear
• Linear operations:

– a = b ⊕ c

– a = the bits of b in (a known) permuted order

• Linear relations can be exposed by solving a system of 
linear equations
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Is a Linear F in a Feistel Network secure?

• Suppose F(Ri-1,Ki) = Ri-1 ⊕ Ki

– Namely, F is linear

• Then Ri = Li-1 ⊕ Ri-1 ⊕ Ki

Li = Ri-1

• Write L16, R16 as linear functions 

of L0, R0 and K. 

– Given L0R0 and L16R16 Solve 

and find K.

• F must therefore be non-linear.

• F is the only source of non-

linearity in DES.
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DES F functions

Source of

non-linearity



page 30November 20, 2012 Introduction to Cryptography, Benny Pinkas      

Differential Cryptanalysis

• The S-boxes are non-linear

• We study the differences between two encryptions of 
two different plaintexts

• Notation:

– Denote two different plaintexts as P and P*

– Their difference is dP = P ⊕ P*

– Let X and X* be two intermediate values, for P and P*, 
respectively, in the encryption process.

– Their difference is  dX = X ⊕ X*

• Namely, dX is always the result of two inputs
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Differences and S-boxes

• S-box: a function (table) from 6 bit inputs to 4 bit output

• X and X* are inputs to the same S-box. We can 
compute their difference dX = X ⊕ X*.

• Y = S(X)

• When dX=0, X=X*, and therefore Y=S(X)=S(X*)=Y*, 
and dY=0.

• When dX≠0,  X≠X* and we don’t know dY for sure, but 
we can investigate its distribution.

• For example,
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Distribution of Y’ for S1

• dX=110100

• There are 26=64 input pairs with this difference, { (000000,110100), 
(000001,110101),…}

• For each pair we can compute the xor of outputs of S1

• E.g., S1(000000)=1110, S1(110100)=1001. dY=0111.

• Table of frequencies of each dY:

0000 0001 0010 0011 0100 0101 0110 0111

0 8 16 6 2 0 0 12

1000 1001 1010 1011 1100 1101 1110 1111

6 0 0 0 0 8 0 6
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Differential Probabilities

• The probability of dX ⇒ dY is the probability that a pair 
of inputs whose xor is dX, results in a pair of outputs 
whose xor is dY (for a given S-box).

• Namely, for dX=110100 these are the entries in the 
table divided by 64.

• Differential cryptanalysis uses entries with large values

– dX=0 ⇒ dY=0

– Entries with value 16/64

– (Recall that the outputs of the S-box are uniformly 
distributed, so the attacker gains a lot by looking at 
differentials rather than the original values.)
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Warmup

dL0 dR0= 0 (R0=R0*)

F K

dL1 = dR0 = 0 dR1 = dL0

Inputs: L0R0,   L0*R0*,    s.t. R0=R0*.  
Namely, inputs whose xor is dL0 0
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3 Round DES

dL0 = 01960018 dR0 = 0

F K

F K

dL3 =48000000 dR3=4196401A

F K

The attacker knows the two 
plaintext/ciphertext pairs, 
and therefore also their 
differences
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Intermediate differences equal to 
plaintext/ciphertext differences

dL0 = 01960018 dR0 = 0

F K

F K

dL3=48000000 dR3=4196401A

F K

dL1 = 0 dR1 =01960018

dR2 =48000000dL2 =01960018

dF = 4196401A 

⊕ 01960018

=    40004002

Note that here the 

adversary also
knows the actual 
two values 
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Finding K

L3’ =48000000 R3’ =4196401A

K3

R2’ =48000000L2’ =01960018

S boxes

Output xor of F (i.e., 

S boxes) is 40004002

⇒Table enumerates

options for the pairs of

inputs to S box

The actual two inputs

to F are known

Find which K3 maps the inputs to an 

s-box input pair that results in the output pair!
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DES with more than 3 rounds

• Carefully choose pairs of plaintexts with specific xor, and 
determine xor of pairs of intermediate values at various 
rounds. 

• E.g., if dL0=40080000x, dR0=04000000x

Then, with probability ¼, dL3=04000000x, dR3=4008000x

• 8 round DES is broken given 214 chosen plaintexts.

• 16 round DES is broken given 247 chosen plaintexts...



Linear cryptanalysis of DES   [BS’89,M’93] 

Given many inp/out  pairs,   can recover key in time less 
than 256  .

Linear cryptanalysis   (overview) :           let  c = DES(k, m)

Suppose for random  k,m :

Pr[ m[i1]⨁⋯⨁m[ir]  ⨁ c[jj]⨁⋯⨁c[jv]  =  k[l1]⨁⋯⨁k[lu]  ] = ½ + ε

For some  ε.

For DES, this exists with    ε = 1/221 ≈ 0.0000000477

Slide taken from Dan Boneh
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Linear attacks

Pr[ m[i1]⨁⋯⨁m[ir]  ⨁ c[jj]⨁⋯⨁c[jv]  =  k[l1]⨁⋯⨁k[lu]  ] = ½ + ε

Thm:  given  1/ε2  random  (m, c=DES(k, m)) pairs then

k[l1,…,lu] = MAJ [   m[i1,…,ir]  ⨁ c[jj,…,jv] ]

with prob. ≥ 97.7%

⇒ with  1/ε2 inp/out pairs can find  k[l1,…,lu] in time  ≈1/ε2

.
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Linear attacks

• For DES,  ε = 1/221 ⇒

– with  242 inp/out pairs can find  k[l1,…,lu] in time 242

– Roughly speaking:   can find 14 key “bits” this way in time 242

– Apply a brute force attack against remaining  56−14=42  bits 
in time 242

• Total attack time   ≈243 ( << 256 )

– but only if you have 242 random inp/out pairs  �
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Message Authentication
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Data Integrity, Message Authentication

• Risk: an active adversary might change messages 
exchanged between Alice and Bob

Alice

Eve

Bob

• Authentication is orthogonal to secrecy. It is a relevant  
challenge regardless of whether encryption is applied.

M
M M’

M’
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One Time Pad

• OTP is a perfect cipher, yet provides no authentication

– Plaintext x1x2…xn

– Key k1k2…kn

– Ciphertext c1=x1⊕k1, c2=x2⊕k2,…,cn=xn⊕kn

• Adversary changes, e.g., c2 to 1⊕c2

• User decrypts 1⊕x2

• Error-detection codes are insufficient. (For example, 
linear codes can be changed by the adversary, even if 
encrypted.)

– They were not designed to withstand adversarial behavior.
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Definitions

• Scenario: Alice and Bob share a secret key K.

• Authentication algorithm:

– Compute a Message Authentication Code: α = MACK(m).

– Send m and α

• Verification algorithm: VK(m, α).

– VK(m, MACK(m)) = accept.  

– For α ≠ MACK(m),  VK(m, α) = reject.

• How does Vk(m) work?

– Receiver knows k. Receives m and α.

– Receiver uses k to compute MACK(m).

– VK(m, α) = 1 iff  MACK(m)= α.
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Common Usage of MACs for message authentication 

Alice Bob
k

m, MACk(m)
Is α = MACk(m) ?

α

k

Eve

Alice Bob
k

m, MACk(m)

Got you !           
α’ ≠ MACk(m’) !

m’,α’

k

does not know k
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Requirements

• Security: The adversary,

– Knows the MAC algorithm (but not K).

– Is given many pairs (mi , MACK(mi)), where the mi values 
might also be chosen by the adversary (chosen plaintext).

– Cannot compute (m, MACK(m)) for any new m (∀i m≠mi).

– The adversary must not be able to compute MACK(m) 
even for a message m which is “meaningless” (since we 
don’t know the context of the attack).

• Efficiency: MAC output must be of fixed length, and as 
short as possible.

– ⇒ The MAC function is not 1-to-1.

– ⇒ An n bit MAC can be broken with prob. of at least 2-n.
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Constructing MACs

• Length of MAC output must be at least n bits, if we do 
not want the cheating probability to be greater than 2-n

• Constructions of MACs

– Based on block ciphers (CBC-MAC)

or, 

– Based on hash functions

• More efficient

• At the time, encryption technology was controlled (export 
restricted) and it was preferable to use other means when 
possible.


