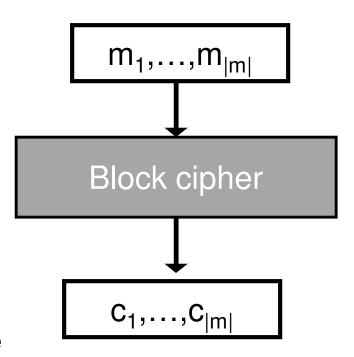
Introduction to Cryptography

Lecture 4

Benny Pinkas

Block Ciphers

- Plaintexts, ciphertexts of **fixed** length, |m|.
 Usually, |m|=64 or |m|=128 bits.
- The encryption algorithm E_k is a *permutation* over $\{0,1\}^{|m|}$, and the decryption D_k is its inverse. (They *are not* permutations of the bit order, but rather of the entire string.)
- Ideally, use a random permutation.
 - Can only be implemented using a table with 2^{|m|} entries ☺
- Instead, use a pseudo-random permutation, keyed by a key k.
 - Implemented by a computer program whose input is m,k.
- We learned last week how to use a block cipher for encrypting messages longer than the block size.



Block ciphers or stream ciphers?

Performance: Crypto++ 5.6.0 [Wei Dai]

AMD Opteron, 2.2 GHz (Linux)

stream	, <u>Cipher</u>	Block/key size	Speed (MB/sec)	
	RC4		126	
	Salsa20/12		643	
	^l Sosemanuk		727	
block	3DES	64/168	13	
*	LAES-128	128/128	109 Slide taken from Dan Bor	neh

Pseudo-random functions (PRFs)

- $F: \{0,1\}^* \times \{0,1\}^* \to \{0,1\}^*$
 - The first input is the key, and once chosen it is kept fixed.
 - For simplicity, assume F: $\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$
 - F(k,x) is written as $F_k(x)$
- F is pseudo-random if $F_k()$ (where k is chosen uniformly at random) is indistinguishable (to a polynomial distinguisher D) from a function f chosen at random from all functions mapping $\{0,1\}^n$ to $\{0,1\}^n$
 - There are 2^n choices of F_k , whereas there are $(2^n)^{2^n}$ choices for f.
 - The distinguisher D's task:
 - We choose a function G. With probability $\frac{1}{2}$ G is F_k (where $k \in \mathbb{R}$ $\{0,1\}^n$), and with probability $\frac{1}{2}$ it is a random function f.
 - D can compute $G(x_1), G(x_2),...$ for any $x_1, x_2,...$ it chooses.
 - D must say if G=F_k or G=f.
 - F_k is pseudo-random if D succeeds with prob ½+negligible..

Pseudo-random permutations (PRPs)

- $F_k(x)$ is a keyed permutation if for every choice of k, $F_k()$ is one-to-one.
 - Note that in this case $F_k(x)$ has an inverse, namely for every y there is exactly one x for which $F_k(x)=y$.
- $F_k(x)$ is a pseudo-random permutation if
 - It is a keyed permutation
 - It is indistinguishable (to a polynomial distinguisher D) from a permutation f chosen at random from all permutations mapping {0,1}ⁿ to {0,1}ⁿ
 - 2ⁿ possible values for F_k
 - (2ⁿ)! possible values for a random permutation
 - It is known how to construct PRPs from PRFs

Block ciphers

- A block cipher is a function $F_k(x)$ with a key k and an |m| bit input x, which has an |m| bit output.
 - $-F_k(x)$ is a keyed permutation
 - When analyzing security we assume it to be a PRP (Pseudo-Random Permutation)
- How can we encrypt plaintexts longer than |m|?
- Different modes of operation were designed for this task.
 - Discussed last week.

Practical design of Block Ciphers

- Recall that as with prgs, the design of a block cipher that is provably secure without any assumptions implies P!=NP.
- The design of block ciphers is therefore more an engineering challenge. Based on experience and public scrutiny.
 - It is often based on combining together simple building blocks, which support the following principles:
 - "Diffusion" (bit shuffling): each intermediate/output bit is affected by many input bits
 - "Confusion": avoid structural relationships (and in particular, linear relationships) between bits
- Cascaded (round) design: the encryption algorithm is composed of iterative applications of a simple round

Confusion-Diffusion and Substitution-Permutation Networks

- Construct a PRP for a large block using PRPs for small blocks
- Divide the input to small parts, and apply rounds:
 - Feed the parts through PRPs ("confusion")
 - Mix the parts ("diffusion")
 - Repeat
- Why both confusion and diffusion are necessary?
- Design musts: Avalanche effect. Using reversible s-boxes.

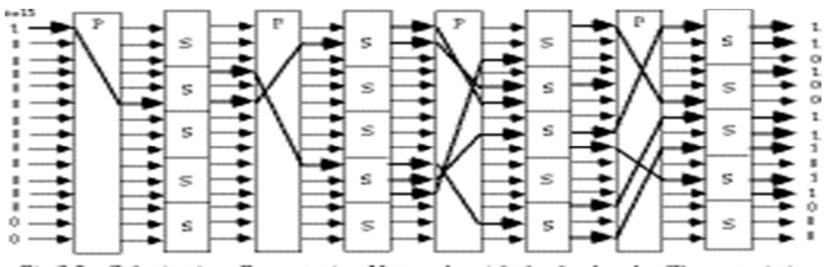
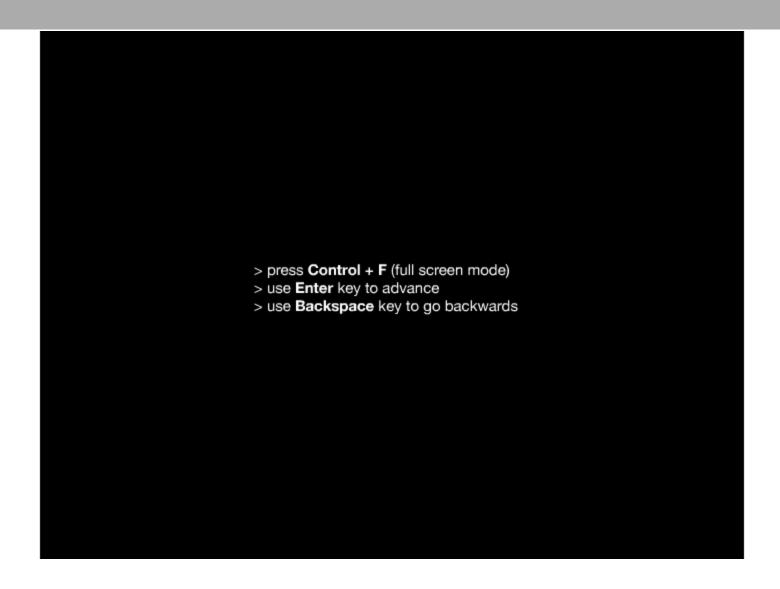


Fig 2.3 - Substitution-Fermutation Network, with the Avalanche Characteristic

AES (Advanced Encryption Standard)

- Design initiated in 1997 by NIST
 - Goals: improve security and software efficiency of DES
 - 15 submissions, several rounds of public analysis
 - The winning algorithm: Rijndael
- Input block length: 128 bits
- Key length: 128, 192 or 256 bits
- Multiple rounds (10, 12 or 14), but does not use a Feistel network

Rijndael animation



AES

- The S-boxes (SubBytes) are the only non-linear component of AES
 - ShiftRows mixes data in byte level
 - MixColumns mixes blocks of four bytes
- Software implementation
 - A straightforward implementation is well suite for 8bit processors, but does not fully utilize 32b/64b architectures
 - A 32 bit implementation can combine SubBytes,
 ShiftRows and MixColumns into 16 lookups in tables of 256 32-bit entries
- Hardware implementation: AES is implemented using machine instruction in new Intel processors.

AES instructions in Intel Westmere:

- ·aesenc, aesenclast: do one round of AES
- · aeskeygenassist: performs AES key expansion
- Implement AES by doing aeskeygenassist + 9 x
 aesenc + aesenclast
- Claim 14 x speed-up over OpenSSL on same hardware
- Similar instructions on AMD Bulldozer

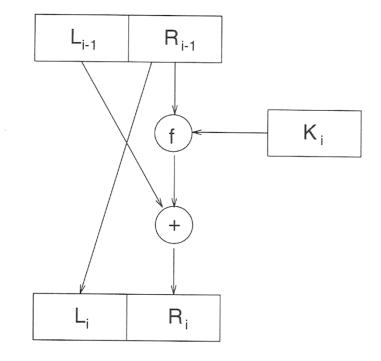
Slide taken from Dan Boneh

Reversible s-boxes

- Substitution-Permutation networks must use reversible s-boxes
 - Allow for easy decryption
- However, we want the block cipher to be "as random as possible"
 - s-boxes need to have some structure to be reversible
 - Better use non-invertible s-boxes
- Enter Feistel networks
 - A round-based block-cipher which uses s-boxes which are not necessarily reversible
 - Namely, building an invertible function (permutation) from a non-invertible function.

Feistel Networks

- Encryption:
- Input: P = L_{i-1} | R_{i-1} . |L_{i-1}|=|R_{i-1}|
 L_i = R_{i-1}
 R_i = L_{i-1} ⊕ F(K_i, R_{i-1})
- Decryption?
- No matter which function is used as F, we obtain a permutation (i.e., F is reversible even if f is not).
- The same code/circuit, with keys in reverse order, can be used for decryption.
- Theoretical result [LubRac]: If f is a pseudo-random function then a 4 rounds Feistel network gives a pseudo-random permutation



DES (Data Encryption Standard)

- A Feistel network encryption algorithm:
 - How many rounds?
 - How are the round keys generated?
 - What is F?
- DES (Data Encryption Standard)
 - Designed by IBM and the NSA, 1977.
 - 64 bit input and output
 - 56 bit key
 - 16 round Feistel network
 - Each round key is a 48 bit subset of the key
- Throughput ≈ software: 10Mb/sec, hardware: 1Gb/sec (in 1991!).

Security of DES

- Criticized for unpublished design decisions (designers did not want to disclose differential cryptanalysis).
- Very secure the best attack in practice is brute force
 - 2006: \$1 million search machine: 30 seconds
 - cost per key: less than \$1
 - •2006: 1000 PCs at night: 1 month
 - Cost per key: essentially 0 (+ some patience)
- Some theoretical attacks were discovered in the 90s:
 - Differential cryptanalysis
 - Linear cryptanalysis: requires about 2⁴⁰ known plaintexts
- The use of DES is not recommend since 2004, but 3-DES is still recommended for use.

Iterated ciphers

- Suppose that E_k is a good cipher, with a key of length k
 bits and plaintext/ciphertext of length n.
 - The best attack on E_k is a brute force attack with has O(1) plaintext/ciphertext pairs, and goes over all 2^k possible keys searching for the one which results in these pairs.
- New technological advances make it possible to run this brute force exhaustive search attack. What shall we do?
 - Design a new cipher with a longer key.
 - Encrypt messages using *two* keys k_1, k_2 , and the encryption function $E_{k2}(E_{k1}())$. Hoping that the best brute force attack would take $(2^k)^2=2^{2k}$ time.

Iterated ciphers – what can go wrong?

- If encryption is closed under composition, namely for all k_1,k_2 there is a k_3 such that $E_{k2}(E_{k1}())=E_{k3}()$, then we gain nothing.
 - Could just exhaustively search for k₃, instead of separately searching for k₁ and k₂.
 - Substitution ciphers definitely have this property (in fact, they are a permutation group and therefore closed under composition).
 - It was suspected that DES is a group under composition.
 This assumption was refuted only in 1992.

Iterated Ciphers - Double DES

- DES is out of date due to brute force attacks on its short key (56 bits)
- Why not apply DES twice with two keys?
 - Double DES: DES $_{k1,k2} = E_{k2}(E_{k1}(m))$
 - Key length: 112 bits
- But, double DES is susceptible to a meet-in-the-middle attack, requiring $\approx 2^{56}$ operations and storage.
 - Compared to brute a force attack, requiring 2¹¹² operations and O(1) storage.

Meet-in-the-middle attack

- Meet-in-the-middle attack
 - $-c = E_{k2}(E_{k1}(m))$
 - $D_{k2} (c) = E_{k1}(m)$
- The attack:
 - Input: (m,c) for which $c = E_{k2}(E_{k1}(m))$
 - For every possible value of k_1 , generate and store $E_{k_1}(m)$.
 - For every possible value of k_2 , generate and store $D_{k2}(c)$.
 - Match k_1 and k_2 for which $E_{k1}(m) = D_{k2}(c)$.
 - Might obtain several options for (k₁,k₂). Check them or repeat the process again with a new (m,c) pair (see next slide)
- The attack is applicable to any iterated cipher. Running time and memory are $O(2^{|k|})$, where |k| is the key size.

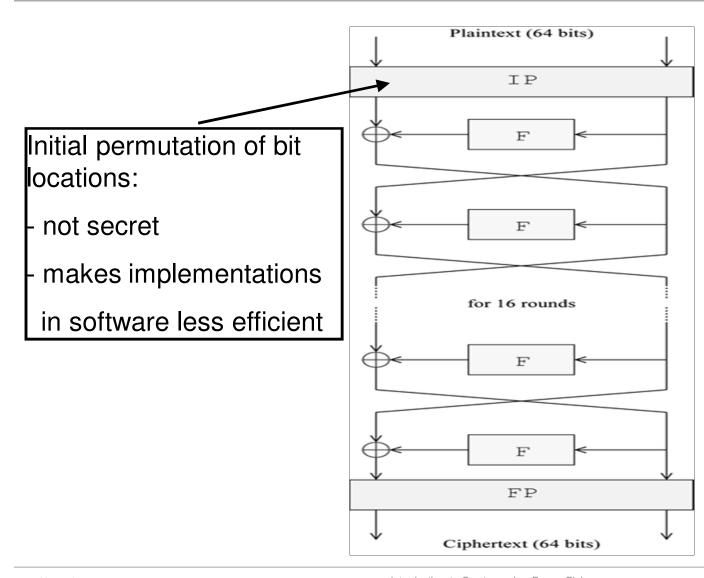
Meet-in-the-middle attack: how many pairs to check?

- The plaintext and the ciphertext are 64 bits long
- The key is 56 bits long
- Suppose that we are given one plaintext-ciphertext pair (m,c)
 - The attack looks for k1,k2, such that D_{k2} (c) = E_{k1} (m)
 - The correct values of k1,k2 satisfy this equality
 - There are 2^{112} (actually 2^{112} -1) other values for k_1, k_2 .
 - Each one of these satisfies the equalities with probability 2⁻⁶⁴
 - We therefore expect to have $2^{112-64}=2^{48}$ candidates for k_1,k_2 .
- Suppose that we are given two pairs (m,c), (m',c')
 - The correct values of k1,k2 satisfy both equalities
 - There are 2^{112} (actually 2^{112} -1) other values for k_1, k_2 .
 - Each one of these satisfies the equalities with probability 2⁻¹²⁸
 - We therefore expect to have $2^{112-128}$ <1 false candidates for k_1, k_2 .

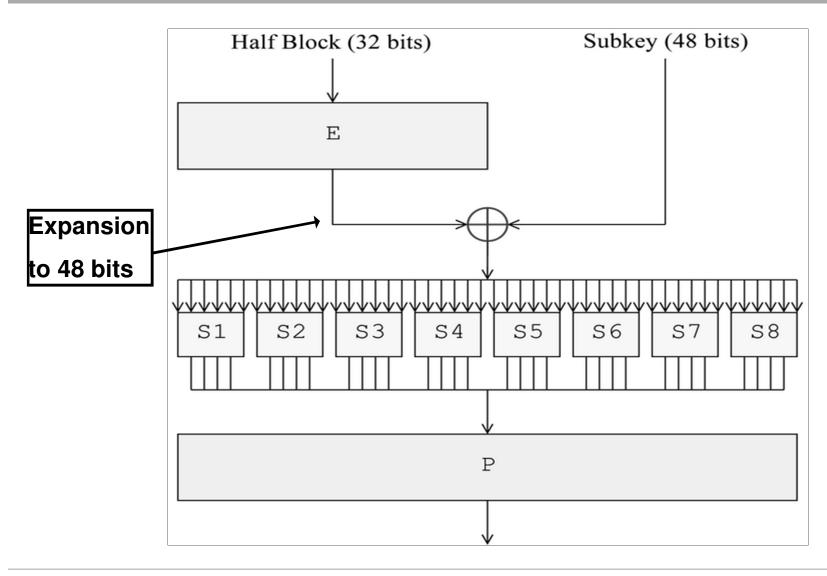
Triple DES

- 3DES $_{k1,k2,k3} = E_{k3}(D_{k2}(E_{k1}(m)))$
- Two-key-3DES $_{k1,k2} = E_{k1}(D_{k2}(E_{k1}(m)))$
- Why use Enc(Dec(Enc())) ?
 - Backward compatibility: setting k₁=k₂ is compatible with single key
 DES
- Two-key-3DES (key length is only 112 bits)
 - There is an attack which requires 2⁵⁶ work and memory, but needs also 2⁵⁶ encryptions of *chosen* plaintexts. Therefore not practical.
 - Without chosen plaintext, best attack needs 2¹¹² work and memory.
 - Why isn't it better to use 3DES with three keys? There is a meet-inthe-middle attack against three keys with 2¹¹² operations
- 3DES is widely used. Less efficient than DES.

Internals of DES



DES F functions

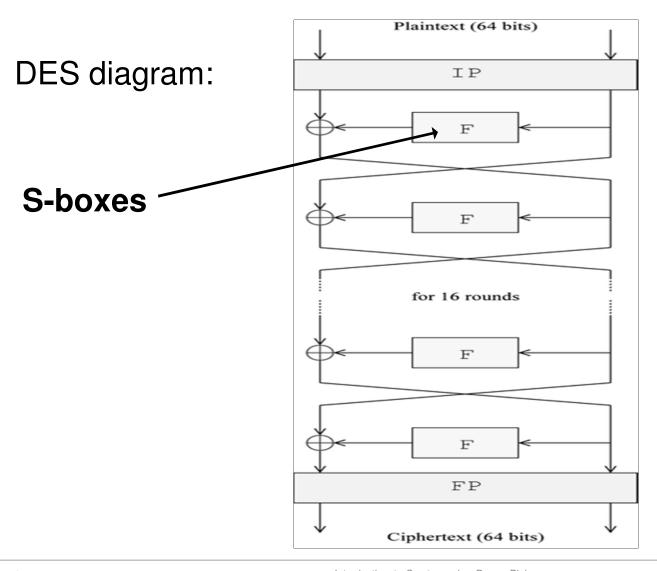


The S-boxes

- Very careful design (it is now known that random choices for the S-boxes result in weak encryption).
- Each s-box maps 6 bits to 4 bits:
 - A 4×16 table of 4-bit entries.
 - Bits 1 and 6 choose the row, and bits 2-5 choose column.
 - Each row is a *permutation* of the values 0,1,...,15.
 - Therefore, given an output there are exactly 4 options for the input
 - Curcial property: Changing one input bit changes at least two output bits

 avalanche effect.

Differential Cryptanalysis of DES

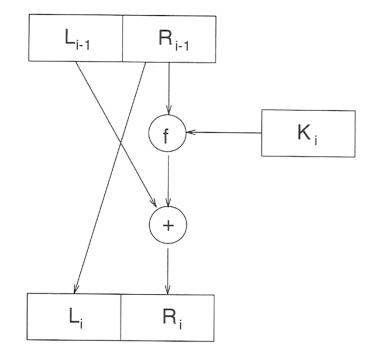


Differential Cryptanalysis [Biham-Shamir 1990]

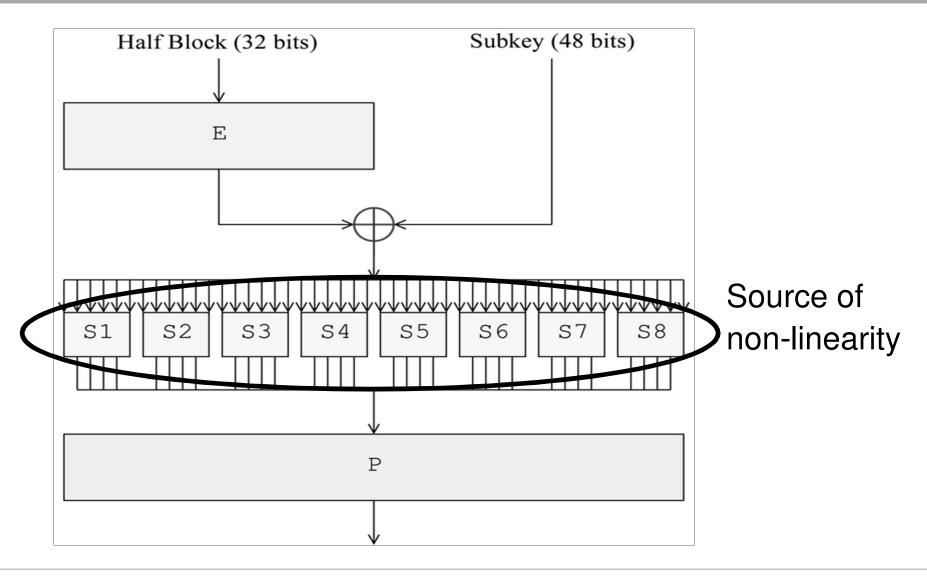
- The first attack to reduce the overhead of breaking DES to below exhaustive search
- Very powerful when applied to other encryption algorithms
- Depends on the structure of the encryption algorithm
- Observation: all operations except for the s-boxes are linear
- Linear operations:
 - $-a=b \oplus c$
 - -a = the bits of b in (a known) permuted order
- Linear relations can be exposed by solving a system of linear equations

Is a Linear F in a Feistel Network secure?

- Suppose $F(R_{i-1}, K_i) = R_{i-1} \oplus K_i$
 - Namely, F is linear
- Then $R_i = L_{i-1} \oplus R_{i-1} \oplus K_i$ $L_i = R_{i-1}$
- Write L_{16} , R_{16} as linear functions of L_0 , R_0 and K.
 - Given L₀R₀ and L₁₆R₁₆ Solve and find K.
- F must therefore be non-linear.
- F is the only source of nonlinearity in DES.



DES F functions



Differential Cryptanalysis

- The S-boxes are non-linear
- We study the differences between two encryptions of two different plaintexts

Notation:

- Denote two different plaintexts as P and P*
- Their difference is dP = P ⊕ P*
- Let X and X* be two intermediate values, for P and P*, respectively, in the encryption process.
- Their difference is $dX = X \oplus X^*$
 - Namely, dX is always the result of two inputs

Differences and S-boxes

- S-box: a function (table) from 6 bit inputs to 4 bit output
- X and X^* are inputs to the same S-box. We can compute their difference $dX = X \oplus X^*$.
- $\cdot Y = S(X)$
- When dX=0, X=X*, and therefore Y=S(X)=S(X*)=Y*, and dY=0.
- When dX≠0, X≠X* and we don't know dY for sure, but we can investigate its distribution.
- For example,

Distribution of Y' for S1

- dX=110100
- There are 2⁶=64 input pairs with this difference, { (000000,110100), (000001,110101),...}
- For each pair we can compute the xor of outputs of S1
- E.g., S1(000000)=1110, S1(110100)=1001. dY=0111.
- Table of frequencies of each dY:

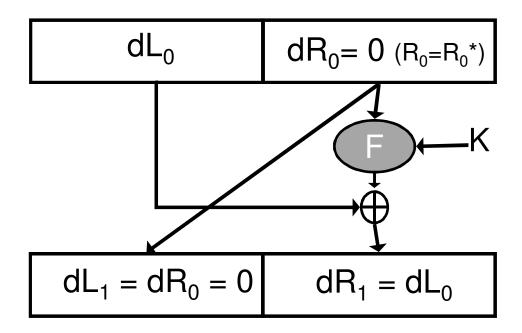
0000	0001	0010	0011	0100	0101	0110	0111
0	8	16	6	2	0	0	12
1000	1001	1010	1011	1100	1101	1110	1111
6	0	0	0	0	8	0	6

Differential Probabilities

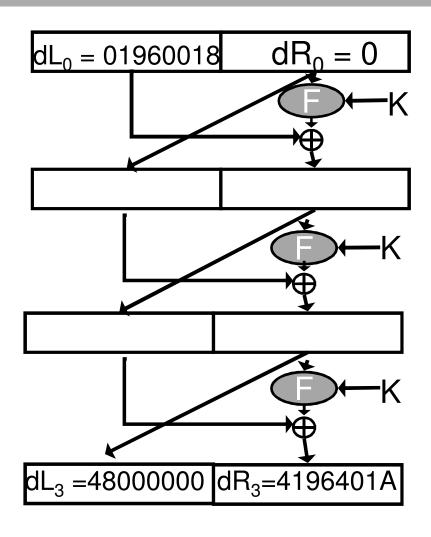
- The probability of $dX \Rightarrow dY$ is the probability that a pair of inputs whose xor is dX, results in a pair of outputs whose xor is dY (for a given S-box).
- Namely, for dX=110100 these are the entries in the table divided by 64.
- Differential cryptanalysis uses entries with large values
 - $-dX=0 \Rightarrow dY=0$
 - Entries with value 16/64
 - (Recall that the outputs of the S-box are uniformly distributed, so the attacker gains a lot by looking at differentials rather than the original values.)

Warmup

Inputs: L_0R_0 , $L_0^*R_0^*$, s.t. $R_0=R_0^*$. Namely, inputs whose xor is dL_0 0

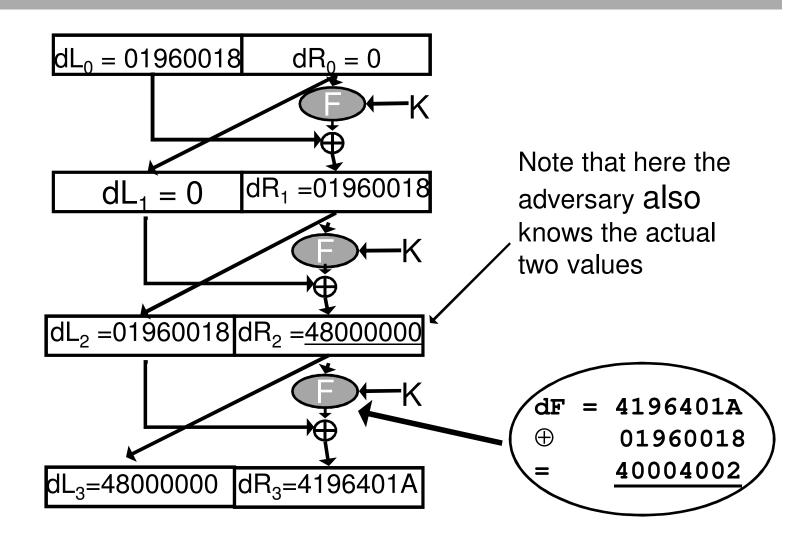


3 Round DES

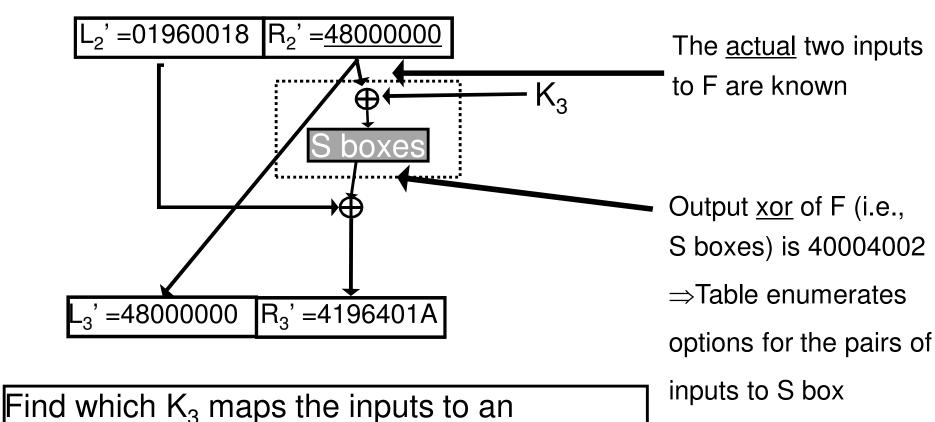


The attacker knows the two plaintext/ciphertext pairs, and therefore also their differences

Intermediate differences equal to plaintext/ciphertext differences



Finding K



Introduction to Cryptography, Benny Pinkas

s-box input pair that results in the output pair!

DES with more than 3 rounds

- Carefully choose pairs of plaintexts with specific xor, and determine xor of pairs of intermediate values at various rounds.
- E.g., if $dL_0=40080000_x$, $dR_0=04000000_x$ Then, with probability ½, $dL_3=04000000_x$, $dR_3=4008000_x$
- 8 round DES is broken given 2¹⁴ chosen plaintexts.
- 16 round DES is broken given 2⁴⁷ chosen plaintexts...

Linear cryptanalysis of DES [BS'89,M'93]

Given *many* inp/out pairs, can recover key in time less than 2⁵⁶.

<u>Linear cryptanalysis</u> (overview) : let c = DES(k, m)

Suppose for random k,m:

 $\Pr\left[\begin{array}{ccc} m[i_1] \oplus \cdots \oplus m[i_r] & \bigoplus & c[j_j] \oplus \cdots \oplus c[j_v] & = & k[l_1] \oplus \cdots \oplus k[l_u] \end{array}\right] = \frac{1}{2} + \epsilon$

For some ϵ .

For DES, this exists with $\varepsilon = 1/2^{21} \approx 0.0000000477$

Slide taken from Dan Boneh

Linear attacks

$$\text{Pr} \Big[\ m[i_1] \oplus \cdots \oplus m[i_r] \ \oplus \ c[j_j] \oplus \cdots \oplus c[j_v] \ = \ k[I_1] \oplus \cdots \oplus k[I_u] \ \Big] = \frac{1}{2} + \epsilon$$

Thm: given $1/\epsilon^2$ random (m, c=DES(k, m)) pairs then $k[l_1,...,l_u] = MAJ \left[m[i_1,...,i_r] \bigoplus c[j_j,...,j_v] \right]$ with prob. $\geq 97.7\%$

 \Rightarrow with $1/\epsilon^2$ inp/out pairs can find $k[l_1,...,l_u]$ in time $\approx 1/\epsilon^2$.

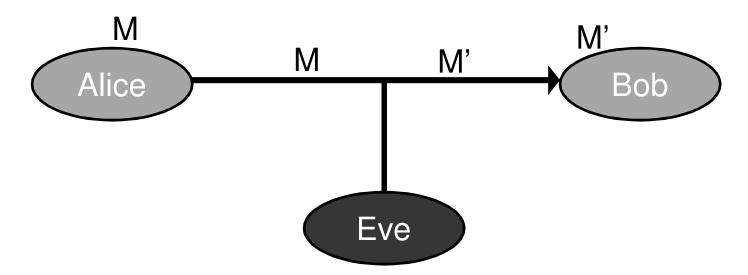
Linear attacks

- For DES, $\varepsilon = 1/2^{21} \Rightarrow$
 - with 2^{42} inp/out pairs can find $k[l_1,...,l_u]$ in time 2^{42}
 - Roughly speaking: can find 14 key "bits" this way in time 242
 - Apply a brute force attack against remaining 56–14=42 bits in time 2⁴²
- Total attack time $\approx 2^{43}$ ($<< 2^{56}$)
 - but only if you have 2⁴² random inp/out pairs ☺

Message Authentication

Data Integrity, Message Authentication

 Risk: an active adversary might change messages exchanged between Alice and Bob



• Authentication is orthogonal to secrecy. It is a relevant challenge regardless of whether encryption is applied.

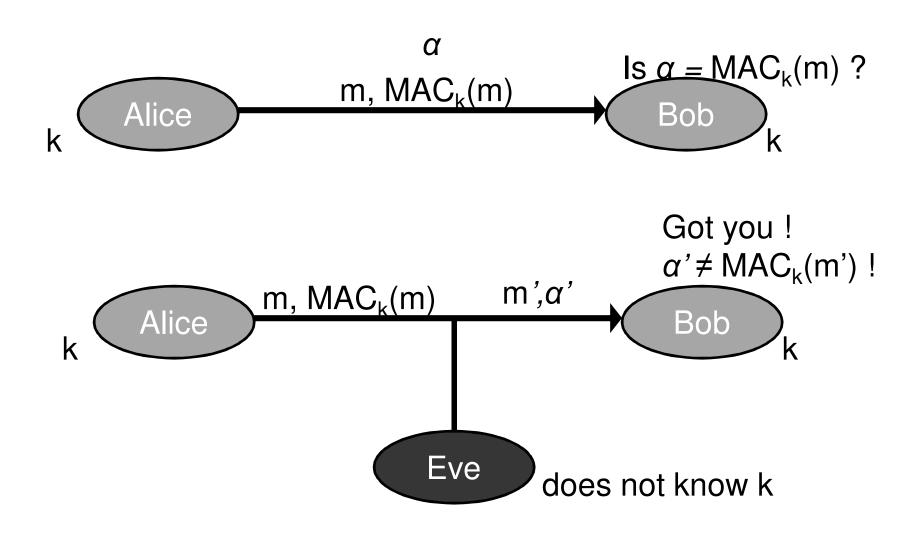
One Time Pad

- OTP is a perfect cipher, yet provides no authentication
 - Plaintext x₁x₂...x_n
 - Key $k_1k_2...k_n$
 - Ciphertext $c_1=x_1\oplus k_1$, $c_2=x_2\oplus k_2$,..., $c_n=x_n\oplus k_n$
- Adversary changes, e.g., c₂ to 1⊕c₂
- User decrypts 1⊕x₂
- Error-detection codes are insufficient. (For example, linear codes can be changed by the adversary, even if encrypted.)
 - They were not designed to withstand adversarial behavior.

Definitions

- Scenario: Alice and Bob share a secret key K.
- Authentication algorithm:
 - Compute a Message Authentication Code: $\alpha = MAC_{\kappa}(m)$.
 - Send m and α
- Verification algorithm: $V_{\kappa}(m, \alpha)$.
 - $-V_K(m, MAC_K(m)) = accept.$
 - For $\alpha \neq MAC_K(m)$, $V_K(m, \alpha) = reject$.
- How does $V_k(m)$ work?
 - Receiver knows k. Receives m and α .
 - Receiver uses k to compute $MAC_{\kappa}(m)$.
 - $-V_K(m, \alpha) = 1$ iff $MAC_K(m) = \alpha$.

Common Usage of MACs for message authentication



Requirements

- Security: The adversary,
 - Knows the MAC algorithm (but not K).
 - Is given many pairs $(m_i, MAC_K(m_i))$, where the m_i values might also be chosen by the adversary (chosen plaintext).
 - Cannot compute $(m, MAC_{\kappa}(m))$ for any new m ($\forall i \ m \neq m_i$).
 - The adversary must not be able to compute $MAC_K(m)$ even for a message m which is "meaningless" (since we don't know the context of the attack).
- Efficiency: MAC output must be of fixed length, and as short as possible.
 - \Rightarrow The MAC function is not 1-to-1.
 - \Rightarrow An n bit MAC can be broken with prob. of at least 2⁻ⁿ.

Constructing MACs

- Length of MAC output must be at least n bits, if we do not want the cheating probability to be greater than 2⁻ⁿ
- Constructions of MACs
 - Based on block ciphers (CBC-MAC)

or,

- Based on hash functions
 - More efficient
 - At the time, encryption technology was controlled (export restricted) and it was preferable to use other means when possible.