
page 1November 20, 2012 Introduction to Cryptography, Benny Pinkas

Introduction to Cryptography

Lecture 4

Benny Pinkas

page 2November 20, 2012 Introduction to Cryptography, Benny Pinkas

Block Ciphers

• Plaintexts, ciphertexts of fixed length, |m|.
Usually, |m|=64 or |m|=128 bits.

• The encryption algorithm Ek is a permutation
over {0,1}|m|, and the decryption Dk is its
inverse. (They are not permutations of the bit
order, but rather of the entire string.)

• Ideally, use a random permutation.

– Can only be implemented using a table with
2|m| entries �

• Instead, use a pseudo-random permutation,
keyed by a key k.

– Implemented by a computer program whose
input is m,k.

• We learned last week how to use a block cipher for
encrypting messages longer than the block size.

m1,…,m|m|

Block cipher

c1,…,c|m|

Block ciphers or stream ciphers?

page 3November 20, 2012 Introduction to Cryptography, Benny Pinkas

AMD Opteron, 2.2 GHz (Linux)

Cipher Block/key size Speed (MB/sec)

RC4 126

Salsa20/12 643

Sosemanuk 727

3DES 64/168 13

AES-128 128/128 109

b
lo

c
k

s
tre

a
m

Performance: Crypto++ 5.6.0 [Wei Dai]

Slide taken from Dan Boneh

page 4November 20, 2012 Introduction to Cryptography, Benny Pinkas

Pseudo-random functions (PRFs)

• F : {0,1}* × {0,1}* → {0,1}*

– The first input is the key, and once chosen it is kept fixed.

– For simplicity, assume F : {0,1}n × {0,1}n → {0,1}n

– F(k,x) is written as Fk(x)

• F is pseudo-random if Fk() (where k is chosen uniformly at random) is
indistinguishable (to a polynomial distinguisher D) from a function f
chosen at random from all functions mapping {0,1}n to {0,1}n

– There are 2n choices of Fk, whereas there are (2n)2n
choices for f.

– The distinguisher D’s task:

• We choose a function G. With probability ½ G is Fk (where k ∈R

{0,1}n), and with probability ½ it is a random function f.

• D can compute G(x1),G(x2),… for any x1,x2,… it chooses.

• D must say if G=Fk or G=f.

• Fk is pseudo-random if D succeeds with prob ½+negligible..

page 5November 20, 2012 Introduction to Cryptography, Benny Pinkas

Pseudo-random permutations (PRPs)

• Fk(x) is a keyed permutation if for every choice of k,
Fk() is one-to-one.

– Note that in this case Fk(x) has an inverse, namely for
every y there is exactly one x for which Fk(x)=y.

• Fk(x) is a pseudo-random permutation if

– It is a keyed permutation

– It is indistinguishable (to a polynomial distinguisher D) from a
permutation f chosen at random from all permutations
mapping {0,1}n to {0,1}n

.

– 2n possible values for Fk

– (2n)! possible values for a random permutation

– It is known how to construct PRPs from PRFs

page 6November 20, 2012 Introduction to Cryptography, Benny Pinkas

Block ciphers

• A block cipher is a function Fk(x) with a key k and an |m| bit
input x, which has an |m| bit output.

– Fk(x) is a keyed permutation

– When analyzing security we assume it to be a PRP (Pseudo-
Random Permutation)

• How can we encrypt plaintexts longer than |m|?

• Different modes of operation were designed for this task.

– Discussed last week.

page 7November 20, 2012 Introduction to Cryptography, Benny Pinkas

Practical design of Block Ciphers

• Recall that as with prgs, the design of a block cipher that is
provably secure without any assumptions implies P!=NP.

• The design of block ciphers is therefore more an engineering
challenge. Based on experience and public scrutiny.

– It is often based on combining together simple building blocks, which
support the following principles:

– “Diffusion” (bit shuffling): each intermediate/output bit is affected by
many input bits

– “Confusion”: avoid structural relationships (and in particular, linear
relationships) between bits

• Cascaded (round) design: the encryption algorithm is
composed of iterative applications of a simple round

page 8November 20, 2012 Introduction to Cryptography, Benny Pinkas

Confusion-Diffusion and Substitution-Permutation
Networks

• Construct a PRP for a large block using PRPs for small blocks
• Divide the input to small parts, and apply rounds:

– Feed the parts through PRPs (“confusion”)

– Mix the parts (“diffusion”)

– Repeat

• Why both confusion and diffusion are necessary?
• Design musts: Avalanche effect. Using reversible s-boxes.

page 9November 20, 2012 Introduction to Cryptography, Benny Pinkas

AES (Advanced Encryption Standard)

• Design initiated in 1997 by NIST

– Goals: improve security and software efficiency of DES

– 15 submissions, several rounds of public analysis

– The winning algorithm: Rijndael

• Input block length: 128 bits

• Key length: 128, 192 or 256 bits

• Multiple rounds (10, 12 or 14), but does not use a
Feistel network

page 10November 20, 2012 Introduction to Cryptography, Benny Pinkas

Rijndael animation

AES

• The S-boxes (SubBytes) are the only non-linear
component of AES

– ShiftRows mixes data in byte level

– MixColumns mixes blocks of four bytes

• Software implementation

– A straightforward implementation is well suite for 8bit
processors, but does not fully utilize 32b/64b architectures

– A 32 bit implementation can combine SubBytes,
ShiftRows and MixColumns into 16 lookups in tables of
256 32-bit entries

• Hardware implementation: AES is implemented using
machine instruction in new Intel processors.

page 11November 20, 2012 Introduction to Cryptography, Benny Pinkas

AES instructions in Intel Westmere:

• aesenc, aesenclast: do one round of AES

• aeskeygenassist: performs AES key expansion

• Implement AES by doing aeskeygenassist + 9 x

aesenc + aesenclast

• Claim 14 x speed-up over OpenSSL on same
hardware

• Similar instructions on AMD Bulldozer

Slide taken from Dan Boneh

page 12November 20, 2012 Introduction to Cryptography, Benny Pinkas

page 13November 20, 2012 Introduction to Cryptography, Benny Pinkas

Reversible s-boxes

• Substitution-Permutation networks must use reversible
s-boxes

– Allow for easy decryption

• However, we want the block cipher to be “as random as
possible”

– s-boxes need to have some structure to be reversible

– Better use non-invertible s-boxes

• Enter Feistel networks

– A round-based block-cipher which uses s-boxes which are
not necessarily reversible

– Namely, building an invertible function (permutation) from
a non-invertible function.

page 14November 20, 2012 Introduction to Cryptography, Benny Pinkas

Feistel Networks

• Encryption:
• Input: P = L i-1 | R i-1 . |L i-1|=|R i-1|

– L i = R i-1
– R i = L i-1 ⊕ F(K i, R i-1)

• Decryption?

• No matter which function is used
as F, we obtain a permutation
(i.e., F is reversible even if f is not).

• The same code/circuit, with keys
in reverse order, can be used for
decryption.

• Theoretical result [LubRac]: If f is
a pseudo-random function then a
4 rounds Feistel network gives a
pseudo-random permutation

page 15November 20, 2012 Introduction to Cryptography, Benny Pinkas

DES (Data Encryption Standard)

• A Feistel network encryption algorithm:
– How many rounds?
– How are the round keys generated?
– What is F?

• DES (Data Encryption Standard)
– Designed by IBM and the NSA, 1977.
– 64 bit input and output
– 56 bit key
– 16 round Feistel network
– Each round key is a 48 bit subset of the key

• Throughput ≈ software: 10Mb/sec, hardware: 1Gb/sec
(in 1991!).

page 16November 20, 2012 Introduction to Cryptography, Benny Pinkas

Security of DES

• Criticized for unpublished design decisions (designers
did not want to disclose differential cryptanalysis).

• Very secure – the best attack in practice is brute force
– 2006: $1 million search machine: 30 seconds

• cost per key: less than $1

– •2006: 1000 PCs at night: 1 month
• Cost per key: essentially 0 (+ some patience)

• Some theoretical attacks were discovered in the 90s:
– Differential cryptanalysis
– Linear cryptanalysis: requires about 240 known plaintexts

• The use of DES is not recommend since 2004 , but 3-
DES is still recommended for use.

page 17November 20, 2012 Introduction to Cryptography, Benny Pinkas

Iterated ciphers

• Suppose that Ek is a good cipher, with a key of length k
bits and plaintext/ciphertext of length n.

– The best attack on Ek is a brute force attack with has O(1)
plaintext/ciphertext pairs, and goes over all 2k possible
keys searching for the one which results in these pairs.

• New technological advances make it possible to run
this brute force exhaustive search attack. What shall we
do?

– Design a new cipher with a longer key.

– Encrypt messages using two keys k1,k2, and the
encryption function Ek2(Ek1()). Hoping that the best brute
force attack would take (2k)2=22k time.

page 18November 20, 2012 Introduction to Cryptography, Benny Pinkas

Iterated ciphers – what can go wrong?

• If encryption is closed under composition, namely for all
k1,k2 there is a k3 such that Ek2(Ek1())=Ek3(), then we
gain nothing.

– Could just exhaustively search for k3, instead of separately
searching for k1 and k2.

– Substitution ciphers definitely have this property (in fact,
they are a permutation group and therefore closed under
composition).

– It was suspected that DES is a group under composition.
This assumption was refuted only in 1992.

page 19November 20, 2012 Introduction to Cryptography, Benny Pinkas

Iterated Ciphers - Double DES

• DES is out of date due to brute force attacks on its
short key (56 bits)

• Why not apply DES twice with two keys?

– Double DES: DES k1,k2 = Ek2(Ek1(m))

– Key length: 112 bits

• But, double DES is susceptible to a meet-in-the-middle
attack, requiring ≈ 256 operations and storage.

– Compared to brute a force attack, requiring 2112 operations
and O(1) storage.

page 20November 20, 2012 Introduction to Cryptography, Benny Pinkas

Meet-in-the-middle attack

• Meet-in-the-middle attack
– c = Ek2(Ek1(m))
– Dk2 (c) = Ek1(m)

• The attack:
– Input: (m,c) for which c = Ek2(Ek1(m))
– For every possible value of k1, generate and store Ek1(m).
– For every possible value of k2, generate and store Dk2(c).
– Match k1 and k2 for which Ek1(m) = Dk2(c).
– Might obtain several options for (k1,k2). Check them or

repeat the process again with a new (m,c) pair (see next slide)

• The attack is applicable to any iterated cipher. Running
time and memory are O(2|k|), where |k| is the key size.

page 21November 20, 2012 Introduction to Cryptography, Benny Pinkas

Meet-in-the-middle attack: how many pairs to check?

• The plaintext and the ciphertext are 64 bits long
• The key is 56 bits long

• Suppose that we are given one plaintext-ciphertext pair (m,c)
– The attack looks for k1,k2, such that Dk2 (c) = Ek1(m)
– The correct values of k1,k2 satisfy this equality
– There are 2112 (actually 2112-1) other values for k1,k2.
– Each one of these satisfies the equalities with probability 2-64

– We therefore expect to have 2112-64=248 candidates for k1,k2.

• Suppose that we are given two pairs (m,c), (m’,c’)
– The correct values of k1,k2 satisfy both equalities
– There are 2112 (actually 2112-1) other values for k1,k2.
– Each one of these satisfies the equalities with probability 2-128

– We therefore expect to have 2112-128<1 false candidates for k1,k2.

page 22November 20, 2012 Introduction to Cryptography, Benny Pinkas

Triple DES

• 3DES k1,k2,k3 = Ek3(Dk2(Ek1(m))

• Two-key-3DES k1,k2 = Ek1(Dk2(Ek1(m))

• Why use Enc(Dec(Enc())) ?
– Backward compatibility: setting k1=k2 is compatible with single key

DES

• Two-key-3DES (key length is only 112 bits)
– There is an attack which requires 256 work and memory, but needs

also 256 encryptions of chosen plaintexts. Therefore not practical.

– Without chosen plaintext, best attack needs 2112 work and memory.

– Why isn’t it better to use 3DES with three keys? There is a meet-in-
the-middle attack against three keys with 2112 operations

• 3DES is widely used. Less efficient than DES.

page 23November 20, 2012 Introduction to Cryptography, Benny Pinkas

Internals of DES

Initial permutation of bit
locations:

- not secret

- makes implementations

in software less efficient

page 24November 20, 2012 Introduction to Cryptography, Benny Pinkas

DES F functions

Expansion

to 48 bits

page 25November 20, 2012 Introduction to Cryptography, Benny Pinkas

The S-boxes

• Very careful design (it is now known that random
choices for the S-boxes result in weak encryption).

• Each s-box maps 6 bits to 4 bits:

– A 4×16 table of 4-bit entries.

– Bits 1 and 6 choose the row, and bits 2-5 choose column.

– Each row is a permutation of the values 0,1,…,15.

• Therefore, given an output there are exactly 4 options for the
input

– Curcial property: Changing one input bit changes at least
two output bits ⇒ avalanche effect.

page 26November 20, 2012 Introduction to Cryptography, Benny Pinkas

Differential Cryptanalysis of DES

S-boxes

DES diagram:

page 27November 20, 2012 Introduction to Cryptography, Benny Pinkas

Differential Cryptanalysis [Biham-Shamir 1990]

• The first attack to reduce the overhead of breaking DES
to below exhaustive search

• Very powerful when applied to other encryption
algorithms

• Depends on the structure of the encryption algorithm
• Observation: all operations except for the s-boxes are

linear
• Linear operations:

– a = b ⊕ c

– a = the bits of b in (a known) permuted order

• Linear relations can be exposed by solving a system of
linear equations

page 28November 20, 2012 Introduction to Cryptography, Benny Pinkas

Is a Linear F in a Feistel Network secure?

• Suppose F(Ri-1,Ki) = Ri-1 ⊕ Ki

– Namely, F is linear

• Then Ri = Li-1 ⊕ Ri-1 ⊕ Ki

Li = Ri-1

• Write L16, R16 as linear functions

of L0, R0 and K.

– Given L0R0 and L16R16 Solve

and find K.

• F must therefore be non-linear.

• F is the only source of non-

linearity in DES.

page 29November 20, 2012 Introduction to Cryptography, Benny Pinkas

DES F functions

Source of

non-linearity

page 30November 20, 2012 Introduction to Cryptography, Benny Pinkas

Differential Cryptanalysis

• The S-boxes are non-linear

• We study the differences between two encryptions of
two different plaintexts

• Notation:

– Denote two different plaintexts as P and P*

– Their difference is dP = P ⊕ P*

– Let X and X* be two intermediate values, for P and P*,
respectively, in the encryption process.

– Their difference is dX = X ⊕ X*

• Namely, dX is always the result of two inputs

page 31November 20, 2012 Introduction to Cryptography, Benny Pinkas

Differences and S-boxes

• S-box: a function (table) from 6 bit inputs to 4 bit output

• X and X* are inputs to the same S-box. We can
compute their difference dX = X ⊕ X*.

• Y = S(X)

• When dX=0, X=X*, and therefore Y=S(X)=S(X*)=Y*,
and dY=0.

• When dX≠0, X≠X* and we don’t know dY for sure, but
we can investigate its distribution.

• For example,

page 32November 20, 2012 Introduction to Cryptography, Benny Pinkas

Distribution of Y’ for S1

• dX=110100

• There are 26=64 input pairs with this difference, { (000000,110100),
(000001,110101),…}

• For each pair we can compute the xor of outputs of S1

• E.g., S1(000000)=1110, S1(110100)=1001. dY=0111.

• Table of frequencies of each dY:

0000 0001 0010 0011 0100 0101 0110 0111

0 8 16 6 2 0 0 12

1000 1001 1010 1011 1100 1101 1110 1111

6 0 0 0 0 8 0 6

page 33November 20, 2012 Introduction to Cryptography, Benny Pinkas

Differential Probabilities

• The probability of dX ⇒ dY is the probability that a pair
of inputs whose xor is dX, results in a pair of outputs
whose xor is dY (for a given S-box).

• Namely, for dX=110100 these are the entries in the
table divided by 64.

• Differential cryptanalysis uses entries with large values

– dX=0 ⇒ dY=0

– Entries with value 16/64

– (Recall that the outputs of the S-box are uniformly
distributed, so the attacker gains a lot by looking at
differentials rather than the original values.)

page 34November 20, 2012 Introduction to Cryptography, Benny Pinkas

Warmup

dL0 dR0= 0 (R0=R0*)

F K

dL1 = dR0 = 0 dR1 = dL0

Inputs: L0R0, L0*R0*, s.t. R0=R0*.
Namely, inputs whose xor is dL0 0

page 35November 20, 2012 Introduction to Cryptography, Benny Pinkas

3 Round DES

dL0 = 01960018 dR0 = 0

F K

F K

dL3 =48000000 dR3=4196401A

F K

The attacker knows the two
plaintext/ciphertext pairs,
and therefore also their
differences

page 36November 20, 2012 Introduction to Cryptography, Benny Pinkas

Intermediate differences equal to
plaintext/ciphertext differences

dL0 = 01960018 dR0 = 0

F K

F K

dL3=48000000 dR3=4196401A

F K

dL1 = 0 dR1 =01960018

dR2 =48000000dL2 =01960018

dF = 4196401A

⊕ 01960018

= 40004002

Note that here the

adversary also
knows the actual
two values

page 37November 20, 2012 Introduction to Cryptography, Benny Pinkas

Finding K

L3’ =48000000 R3’ =4196401A

K3

R2’ =48000000L2’ =01960018

S boxes

Output xor of F (i.e.,

S boxes) is 40004002

⇒Table enumerates

options for the pairs of

inputs to S box

The actual two inputs

to F are known

Find which K3 maps the inputs to an

s-box input pair that results in the output pair!

page 38November 20, 2012 Introduction to Cryptography, Benny Pinkas

DES with more than 3 rounds

• Carefully choose pairs of plaintexts with specific xor, and
determine xor of pairs of intermediate values at various
rounds.

• E.g., if dL0=40080000x, dR0=04000000x

Then, with probability ¼, dL3=04000000x, dR3=4008000x

• 8 round DES is broken given 214 chosen plaintexts.

• 16 round DES is broken given 247 chosen plaintexts...

Linear cryptanalysis of DES [BS’89,M’93]

Given many inp/out pairs, can recover key in time less
than 256 .

Linear cryptanalysis (overview) : let c = DES(k, m)

Suppose for random k,m :

Pr[m[i1]⨁⋯⨁m[ir] ⨁ c[jj]⨁⋯⨁c[jv] = k[l1]⨁⋯⨁k[lu]] = ½ + ε

For some ε.

For DES, this exists with ε = 1/221 ≈ 0.0000000477

Slide taken from Dan Boneh

November 20, 2012 Introduction to Cryptography, Benny Pinkas page 39

Linear attacks

Pr[m[i1]⨁⋯⨁m[ir] ⨁ c[jj]⨁⋯⨁c[jv] = k[l1]⨁⋯⨁k[lu]] = ½ + ε

Thm: given 1/ε2 random (m, c=DES(k, m)) pairs then

k[l1,…,lu] = MAJ [m[i1,…,ir] ⨁ c[jj,…,jv]]

with prob. ≥ 97.7%

⇒ with 1/ε2 inp/out pairs can find k[l1,…,lu] in time ≈1/ε2

.

November 20, 2012 Introduction to Cryptography, Benny Pinkas page 40

Linear attacks

• For DES, ε = 1/221 ⇒

– with 242 inp/out pairs can find k[l1,…,lu] in time 242

– Roughly speaking: can find 14 key “bits” this way in time 242

– Apply a brute force attack against remaining 56−14=42 bits
in time 242

• Total attack time ≈243 (<< 256)

– but only if you have 242 random inp/out pairs �

November 20, 2012 Introduction to Cryptography, Benny Pinkas page 41

page 42November 20, 2012 Introduction to Cryptography, Benny Pinkas

Message Authentication

page 43November 20, 2012 Introduction to Cryptography, Benny Pinkas

Data Integrity, Message Authentication

• Risk: an active adversary might change messages
exchanged between Alice and Bob

Alice

Eve

Bob

• Authentication is orthogonal to secrecy. It is a relevant
challenge regardless of whether encryption is applied.

M
M M’

M’

page 44November 20, 2012 Introduction to Cryptography, Benny Pinkas

One Time Pad

• OTP is a perfect cipher, yet provides no authentication

– Plaintext x1x2…xn

– Key k1k2…kn

– Ciphertext c1=x1⊕k1, c2=x2⊕k2,…,cn=xn⊕kn

• Adversary changes, e.g., c2 to 1⊕c2

• User decrypts 1⊕x2

• Error-detection codes are insufficient. (For example,
linear codes can be changed by the adversary, even if
encrypted.)

– They were not designed to withstand adversarial behavior.

page 45November 20, 2012 Introduction to Cryptography, Benny Pinkas

Definitions

• Scenario: Alice and Bob share a secret key K.

• Authentication algorithm:

– Compute a Message Authentication Code: α = MACK(m).

– Send m and α

• Verification algorithm: VK(m, α).

– VK(m, MACK(m)) = accept.

– For α ≠ MACK(m), VK(m, α) = reject.

• How does Vk(m) work?

– Receiver knows k. Receives m and α.

– Receiver uses k to compute MACK(m).

– VK(m, α) = 1 iff MACK(m)= α.

page 46November 20, 2012 Introduction to Cryptography, Benny Pinkas

Common Usage of MACs for message authentication

Alice Bob
k

m, MACk(m)
Is α = MACk(m) ?

α

k

Eve

Alice Bob
k

m, MACk(m)

Got you !
α’ ≠ MACk(m’) !

m’,α’

k

does not know k

page 47November 20, 2012 Introduction to Cryptography, Benny Pinkas

Requirements

• Security: The adversary,

– Knows the MAC algorithm (but not K).

– Is given many pairs (mi , MACK(mi)), where the mi values
might also be chosen by the adversary (chosen plaintext).

– Cannot compute (m, MACK(m)) for any new m (∀i m≠mi).

– The adversary must not be able to compute MACK(m)
even for a message m which is “meaningless” (since we
don’t know the context of the attack).

• Efficiency: MAC output must be of fixed length, and as
short as possible.

– ⇒ The MAC function is not 1-to-1.

– ⇒ An n bit MAC can be broken with prob. of at least 2-n.

page 48November 20, 2012 Introduction to Cryptography, Benny Pinkas

Constructing MACs

• Length of MAC output must be at least n bits, if we do
not want the cheating probability to be greater than 2-n

• Constructions of MACs

– Based on block ciphers (CBC-MAC)

or,

– Based on hash functions

• More efficient

• At the time, encryption technology was controlled (export
restricted) and it was preferable to use other means when
possible.

