Introduction to Cryptography

Lecture 9

Benny Pinkas

Integer Multiplication & Factoring as a One Way Function.

Can a public key system be based on this observation ?????

The Multiplicative Group Z_{pq}*

- p and q denote two large primes (e.g. 512 bits long).
- Denote their product as N = pq.
- The multiplicative group $Z_N^* = Z_{pq}^*$ contains all integers in the range [1,pq-1] that are relatively prime to both p and q.
- The size of the group is

$$- \phi(N) = \phi(pq) = (p-1) (q-1) = N - (p+q) + 1$$

• For every $x \in Z_N^*$, $x^{\phi(N)} = x^{(p-1)(q-1)} = 1 \mod N$.

Trapdoor permutation

- A trapdoor permutation is a tuple of three PPT (Probabilistic Polynomial Time) algorithms:
 - GEN(1^k): Outputs a pair (F,F⁻¹)
 - F is a permutation over $\{0,1\}^k$. (In our case the permutation is over Z_n^* .)
 - Correctness: For all x, $F^{-1}(F(x)) = x$.
 - One-wayness: For all PPT A, for (F,F^{-1}) randomly generated by GEN, and random x, the probability that A(F,F(x))=x is negligible.
 - In other words, inverting F without the trapdoor F⁻¹ is hard.
 - Looks ideal for public key encryption.

Example

- $f_{q,p}(x) = g^x \mod p$ is *not* a trapdoor one way function.
 - Why?
- Therefore El Gamal encryption is not based on assuming the existence of a trapdoor one way function.

The RSA Trapdoor Permutation

- The RSA function (textbook RSA) is not a secure encryption system
 - Does not satisfy basic security definitions
 - Many attacks do exist
- It implements a trapdoor permutation, which is the basis for secure public key encryption
 - It is the working horse of public key cryptography

The RSA Trapdoor Permutation

- Gen (public key):
 - N=pq the product of two primes (we assume that factoring N is hard)
 - e such that $gcd(e, \phi(N))=1$ (are these hard to find?)
- Trapdoor (Private key):
 - d such that de≡1 mod $\phi(N)$
- Computing F (Encryption) of $M \in \mathbb{Z}_N^*$
 - $-C=E(M)=M^e \mod N$
- Computing F⁻¹ (Decryption) of $C \in \mathbb{Z}_N^*$
 - $-M=D(C)=C^d \mod N$ (why does it work?)

Public-key encryption from trapdoor permutations

- (Gen, F, F⁻¹): secure trapdoor permutation $X \rightarrow Y$
- (E_s, D_s): symmetric encryption defined over (K,M,C)
- H: $X \rightarrow K$ a hash function

Construct a pub-key enc. system (G, E, D):

Key generation Gen: same as Gen for trapdoor permutation

Public-key encryption from trapdoor permutations

- (Gen, F, F⁻¹): secure trapdoor permutation $X \rightarrow Y$
- (E_s, D_s): symmetric auth. encryption defined over (K,M,C)
- H: $X \rightarrow K$ a hash function

E(pk, m): $x \leftarrow_R X$, $y \leftarrow F(pk, x)$ $k \leftarrow H(x)$, $c \leftarrow E_s(k, m)$ output (y, c)

```
\begin{array}{c} \textbf{D(sk, (y,c))}:\\ x \leftarrow F^{-1}(sk, y),\\ k \leftarrow H(x),\\ m \leftarrow D_s(k, c)\\ output m \end{array}
```

Public-key encryption from trapdoor permutations

In pictures:

Security Theorem:

If (Gen, F, F⁻¹) is a secure trapdoor permutation, (E_s, D_s) provides auth. enc., and H: X \rightarrow K is a "random oracle" then (Gen,E,D) is public key enc scheme secure against chosen ciphertext attacks.

Security reductions

Security by reduction

- Define what it means for the system to be "secure" (chosen plaintext/ciphertext attacks, etc.)
- State a "hardness assumption" (e.g., that it is hard to extract discrete logarithms in a certain group).
- Show that if the hardness assumption holds then the cryptosystem is secure.

Benefits:

- To examine the security of the system it is sufficient to check whether the assumption holds
- Similarly, for setting parameters (e.g. group size).

RSA Security

- (For ElGamal encryption, we showed that if the DDH assumption holds then El Gamal encryption has semantic security.)
- We know that if factoring N is easy then RSA is insecure
 - can factor $N \Rightarrow$ find $p,q \Rightarrow$ find $(p-1)(q-1) \Rightarrow$ find d from $e \Rightarrow$ decrypt RSA
 - Is the converse true? (we would have liked to show that decrypting RSA ⇒ factoring N)
- Factoring assumption:
 - For a randomly chosen p,q of good length, it is infeasible to factor N=pq.
 - This assumption might be too weak (might not ensure secure RSA encryption)
 - Maybe it is possible to break RSA without factoring N?
 - We don't know how to reduce RSA security to the hardness of factoring.
 - Fact: finding d is equivalent to factoring (will not be proved here)
 - I.e., if it is possible to find d given (N,e), then it is easy to factor N.
 - can find d from $e \Rightarrow$ can factor N
 - But perhaps it is possible to break RSA without finding d?

The RSA assumption: Trap-Door One-Way Function (OWF)

 (what is the minimal assumption required to show that RSA encryption is secure?)

The RSA assumption: Trap-Door One-Way Function (OWF)

- The RSA assumption: the RSA function is a trapdoor permutation
 - The setting: Generate random RSA keys (N,e,d). Choose random $y \in Z^*_N$. Provide the adversary with N,e,y.
 - The assumption that is the there is no efficient algorithm which can output x such that x^e=y mod N.
 - (The trapdoor is d s.t. $ed = 1 \mod \phi(N)$)
- More concretely, (n,e,t,ε)-RSA assumption
 - For all t-time adversaries A
 - Choose p,q as random n/2 bit primes, define N=pq (|N|=n), choose random y in Z_N^* .
 - Pr (A(N,e,y) = x, s.t. $x^e=y \mod N$) < ϵ

RSA as a One Way Trapdoor Permutation

RSA assumption: cautions

- The RSA assumption is quite well established:
 - Namely, the assumption that RSA is a Trapdoor One-Way Permutation
 - This means that it is hard to invert RSA on a random input
 without knowing the secret key
- But is it a secure cryptosystem?
 - Given the assumption it is hard to reconstruct the input x (if x was chosen randomly), but is it hard to learn anything about x?
- Theorem [G]: RSA hides the log(log(N)) least and most significant bits of a uniformly-distributed random input
 - But some (other) information about pre-image may leak

Security of RSA

- Deterministic encryption. In textbook RSA:
 - M is always encrypted as Me
 - The ciphertext is as long as the domain of M
- Corollary: textbook RSA does not have semantic security.
 - If we suspect that a ciphertext is an encryption of a specific message M, we can encrypt m and compare it to the ciphertext. If the result is equal, then M is indeed the message encrypted in the ciphertext.
- In the recitation we will show that if M is a 64 bit message, it is easy tor recover it using a meet in the middle attack.
- Encrypting random messages:
- It can be proved that if the message M is chosen uniformly at random from Z^*_N , then the RSA assumption means that no efficient algorithm can recover M from N, e, M^e .

Security of RSA

- Chosen ciphertext attack: (homomorphic property)
 - Given $C = M^e$ and $C' = M'^e$ it is easy to compute $C'' = MM'^e$
 - Textbook RSA is therefore also susceptible to chosen ciphertext attacks:
 - We are given a ciphertext C=M^e
 - We can choose a random R and generate $C'=CR^e$ (an encryption of $M \cdot R$).
 - Suppose we can receive the decryption of C'. It is equal to $M \cdot R$.
 - We divide it by R and reveal M.

Padded RSA

- In order to make textbook RSA semantically secure we must change it to be a probabilistic encryption
 - The initial message must be preprocessed before being input to the RSA function
 - For example, we can pad the message with random bits.
 - Suppose that messages are of length /N/-L bits
 - To encrypt a message M, choose a random string r of length L, and compute (r | M)^e mod N.
 - When decrypting, output only the last /N/-L bits of C^d mod N
- Any message has 2^L possible encryptions. L must be long enough so that a search of all 2^L pads is inefficient.
- There is no known proof that this is secure.
- Similar schemes can be proven to be secure under certain assumptions

RSA in practice – PKCS1 V1.5

To encrypt a message

- The result is encrypted using the RSA function
- This system is widely deployed even though it has no security analysis.
- This solution makes the encryption non-deterministic but does not prevent chosen ciphertext attacks.

PKCS1 V1.5 – Attack [Bleinchenbacher 98]

To encrypt a message

- PKCS1 as used in SSL
 - Server decrypts message. If first byte is not 02, sends an error message.
 - Attacker can test if plaintext begins with "02"
- Attack:
 - Given ciphertext C, choose random r. Compute C' = reC = (r · PKCS1(msg))e.
 - Send C' and wait for response.

PKCS1 V1.5 – Attack [Bleinchenbacher 98]

- The attacker can test if the plaintext r-PKCS1(msg) begins with "02". This reveals information about the message.
- To see why this works, consider a simplified setting:
 - $-N = 2^n$ (i.e., is a power of 2, which is impossible in RSA)
 - Server returns an error message if msb=1
 - Attacker sends (2·X)e.
 - Answer is 1 iff msb of (2·x) mod 2ⁿ is 1. Namely, if 2nd bit of X is 1.
 - Attacker sends (4·X)^e.
 - Answer is 1 3rd bit of X is 1.
 - Continue to find all bits of X...

PKCS1 V2.0 - OAEP (based on slides by Dan Boneh)

- OAEP (Optimal asymmetric encryption padding)
- Encrypt X|Y using RSA
- Decryption: check pad and reject if invalid.

Thm: If RSA is a trapdoor permutation then RSA-OAEP provides chosen ciphertext security when H,G are "random oracles".

Usually implement H,G using SHA-256.

Implementation attacks (based on slides by Dan Boneh)

- Attack the implementation of RSA
- Timing attack (Kocher 97)
 - The time it takes to compute C^d mod N can expose d.
- Power attack (Kocher 99)
 - The power consumption of a smartcard while it is computing C^d mod N can expose d.
- Faults attack: (BDL 97) A computer error during C^d mod N can expose d.
 - OpenSSL defense: check output. 10% slowdown.

Digital Signatures

Handwritten signatures

- Associate a document with an signer (individual)
- Signature can be verified against a different signature of the individual
- It is hard to forge the signature...
- It is hard to change the document after it was signed...
- Signatures are legally binding

Desiderata for digital signatures

- Associate a document to an signer
- A digital signature is attached to a document (rather then be part of it)
- The signature is easy to verify but hard to forge
 - Signing is done using knowledge of a private key
 - Verification is done using a public key associated with the signer (rather than comparing to an original signature)
 - It is impossible to change even one bit in the signed document
- A copy of a digitally signed document is as good as the original signed document.
- Digital signatures could be legally binding...

Non Repudiation

- Prevent signer from denying that it signed the message
- I.e., the receiver can prove to third parties that the message was signed by the signer
- This is different than message authentication (MACs)
 - There the receiver is assured that the message was sent by the receiver and was not changed in transit
 - But the receiver cannot prove this to other parties
 - MACs: sender and receiver share a secret key K
 - If R sees a message MACed with K, it knows that it could have only been generated by S
 - But if R shows the MAC to a third party, it cannot prove that the MAC was generated by S and not by R

Signing/verification process

Diffie-Hellman "New directions in cryptography" (1976)

- In public key encryption
 - The encryption function is a trapdoor permutation f
 - Everyone can encrypt = compute f(). (using the public key)
 - Only Alice can decrypt = compute $f^{-1}()$. (using her private key)
- Alice can use f for signing
 - Alice signs m by computing $s=f^{-1}(m)$.
 - Verification is done by computing m=f(s).
- Intuition: since only Alice can compute $f^{-1}()$, forgery is infeasible.
- Caveat: none of the established practical signature schemes following this paradigm is provably secure

Example: simple RSA based signatures

- Key generation: (as in RSA)
 - Alice picks random p,q. Finds $e \cdot d=1 \mod (p-1)(q-1)$.
 - Public verification key: (N,e)
 - Private signature key: d
- Signing: Given m, Alice computes s=m^d mod N.
- Verification: given m,s and public key (N,e).
 - Compute $m' = s^e \mod N$.
 - Output "valid" iff m'=m.

Example: simple RSA based signatures

- Key generation: (as in RSA)
 - Alice picks random p,q. Finds $e \cdot d=1 \mod (p-1)(q-1)$.
 - Public verification key: (N,e)
 - Private signature key: d
- Signing: Given m, Alice computes s=m^d mod N.
- Verification: given m,s and public key (N,e).
 - Compute $m' = s^e \mod N$.
 - Output "valid" iff m'=m.

Message lengths

- A technical problem:
 - |m| might be longer than |N|
 - m might not be in the domain of $f^{-1}()$

Solution "hash-and-sign" paradigm:

- Signing: First compute H(m), then compute the signature $f^{-1}(H(M))$. Where,
 - The range of H() must be contained in the domain of $f^{-1}()$.
 - H() must be collision intractable. I.e. it is hard to find (in polynomial time) messages m, m' s.t. H(m)=H(m).
- Verification:
 - Compute f(s). Compare to H(m).
- Using H() is also good for security reasons. See below.

Security of using a hash function

- Intuitively
 - Adversary can compute H(), f(), but not $H^{-1}()$, $f^{-1}()$.
 - Can only compute (m,H(m)) by choosing m and computing H().
 - Adversary wants to compute $(m, f^{-1}(H(m)))$.
 - To break signature needs to show s s.t. f(s)=H(m). (E.g. $s^e=H(m)$.)
 - Failed attack strategy 1:
 - Pick s, compute f(s), and look for m s.t. H(m)=f(s).
 - Failed attack strategy 2:
 - Pick m,m' s.t. H(m)=H(m'). Ask for a signature s of m' (which is also a signature of m).
 - (If H() is not collision resistant, adversary could find m,m' s.t. H(m) = H(m').)
 - This does not mean that the scheme is secure, only that these attacks fail.