Introduction to Cryptography

Lecture 9

Benny Pinkas




easy

P9

\&

P9
\ S

hard

Can a public key system be based

December 25, 2012 Introduction to Cryptography, Benny Pinkas page 2



- p and g denote two large primes (e.g. 512 bits long).
- Denote their product as N = pq.

- The multiplicative group Zy =Z,," contains all integers

in the range [1,pg-1] that are relatively prime to both p
and q.

- The size of the group is
- AN) = ¢(pq) = (p-1) (q-1) = N - (p+q) + 1

- Forevery x € Z, xMN=x(p-1)@1) = 1 mod N.

December 25, 2012 Introduction to Cryptography, Benny Pinkas page 3



Trapdoor permutation

- A trapdoor permutation is a tuple of three PPT (Probabilistic
Polynomial Time) algorithms:

— GEN(1%): Outputs a pair (F,F1)

— F is a permutation over {0,1}%. (In our case the
permutation is over Z.*.)

— Correctness: For all x, F1(F(x)) = x.

— One-wayness: For all PPT A, for (F,F') randomly
generated by GEN, and random x, the probability that
A(F,F(x))=x is negligible.

— In other words, inverting F without the trapdoor F-1 is hard.

— Looks ideal for public key encryption.



» f,p(X) = g*mod pis not a trapdoor one way function.

- Why?

- Therefore El Gamal encryption is not based on
assuming the existence of a trapdoor one way function.

December 25, 2012 Introduction to Cryptography, Benny Pinkas page 5



- The RSA function (textbook RSA) is not a secure
encryption system

— Does not satisfy basic security definitions
- Many attacks do exist

- It implements a trapdoor permutation, which is the
basis for secure public key encryption

— It is the working horse of public key cryptography

December 25, 2012 Introduction to Cryptography, Benny Pinkas page 6



- Gen (public key):

— N=pqg the product of two primes (we assume that factoring
N is hard)

— e such that gcd(e,¢(N))=1 (are these hard to find?)
- Trapdoor (Private key):
— d such that de=7 mod ¢(N)

- Computing F (Encryption) of MeZ,*
_ C=E(M)=M® mod N
- Computing F-' (Decryption) of CeZ,*
_ M=D(C)=C%mod N (why does it work?)

December 25, 2012 Introduction to Cryptography, Benny Pinkas page 7



- (Gen, F, F): secure trapdoor permutation X — Y

- (E,, Dg) : symmetric encryption defined over (K,M,C)
- H: X — K a hash function

Construct a pub-key enc. system (G, E, D):

Key generation Gen: same as Gen for trapdoor
permutation




« (Gen, F, F'): secure trapdoor permutation X — 'Y

* (Es, Dg) : symmetric auth. encryption defined over (K,M,C)
 H: X — K a hash function

E( pk, m) :

X g X, Yy F(pk, x)
K «— H(x),

¢ — E,(k, m)

output (y, c)

D( sk, (y.c) ) :

x «— F(sk, y),

K «— H(x),
m «— D.(k, c)

output m




In pictures:

\ J1

Y
hehder body

Security Theorem:

If (Gen, F, F') is a secure trapdoor permutation,

(Es, Dg) provides auth. enc.,

and H: X— K isa “random oracle”
then (Gen,E,D) is public key enc scheme
secure against chosen ciphertext attacks.




Security reductions

- Security by reduction

— Define what it means for the system to be “secure”
(chosen plaintext/ciphertext attacks, etc.)

- State a “hardness assumption” (e.g., that it is hard to
extract discrete logarithms in a certain group).

— Show that if the hardness assumption holds then the
cryptosystem is secure.

- Benefits:

— To examine the security of the system it is sufficient to
check whether the assumption holds

- Similarly, for setting parameters (e.g. group size).



RSA Security

(For ElGamal encryption, we showed that if the DDH assumption
holds then El Gamal encryption has semantic security.)

- We know that if factoring N is easy then RSA is insecure
— can factor N = find p,g = find (p-71)(g-1) = find d from e = decrypt RSA

— Is the converse true? (we would have liked to show that decrypting RSA
= factoring N)

- Factoring assumption:
- For a randomly chosen p,q of good length, it is infeasible to factor N=pq.

— This assumption might be too weak (might not ensure secure RSA
encryption)

— Maybe it is possible to break RSA without factoring N ?
— We don’t know how to reduce RSA security to the hardness of factoring.

— Fact: finding dis equivalent to factoring (will not be proved here)
- l.e., if it is possible to find d given (N,e) , then it is easy to factor N.

— can find dfrom e = can factor N

— But perhaps it is possible to break RSA without finding d?



- (what is the minimal assumption required to show that RSA
encryption is secure?)

December 25, 2012 Introduction to Cryptography, Benny Pinkas page 13



The RSA assumption: Trap-Door One-Way
Function (OWF)

- The RSA assumption: the RSA function is a trapdoor
permutation

- The setting: Generate random RSA keys (N, e,d). Choose
random ye Z%,. Provide the adversary with N,e,y.

— The assumption that is the there is no efficient algorithm
which can output x such that x®=y mod N.

— (The trapdoor is d s.t. ed = 1 mod ¢(N))

- More concretely, (n,e,t,e)-RSA assumption
— For all t-time adversaries A

— Choose p,q as random n/2 bit primes, define N=pq (|N|=n),
choose random y in Zy*.

- Pr(A(N,e,y) =x, s.t. x*=ymod N) < ¢



'\ M
& nard

Easy with trapdoor info (d)




RSA assumption: cautions

- The RSA assumption is quite well established:

— Namely, the assumption that RSA is a Trapdoor One-Way
Permutation

- This means that it is hard to invert RSA on a random input
— without knowing the secret key

- But is it a secure cryptosystem?

- Given the assumption it is hard to reconstruct the input x
(if x was chosen randomly), but is it hard to learn anything
about X"

- Theorem [G]: RSA hides the log(log(N)) least and most
significant bits of a uniformly-distributed random input

— But some (other) information about pre-image may leak



Security of RSA

- Deterministic encryption. In textbook RSA:
— Mis always encrypted as M¢
— The ciphertext is as long as the domain of M
- Corollary: textbook RSA does not have semantic security.

— If we suspect that a ciphertext is an encryption of a specific message
M, we can encrypt m and compare it to the ciphertext. If the result is
equal, then M is indeed the message encrypted in the ciphertext.

- In the recitation we will show that if M is a 64 bit message, it is
easy tor recover it using a meet in the middle attack.

- Encrypting random messages:

- It can be proved that if the message M is chosen uniformly at
random from Z*, then the RSA assumption means that no
efficient algorithm can recover M from N,e, Me.



- Chosen ciphertext attack: (homomorphic property)
- Given C=Meé and C’=M’¢itis easy to compute C"’=MM’ €

— Textbook RSA is therefore also susceptible to chosen
ciphertext attacks:

- We are given a ciphertext C=M¢

- We can choose a random R and generate C’=CR¢(an
encryption of M-R).

- Suppose we can receive the decryption of C’. It is equal to M-R.
- We divide it by R and reveal M.

December 25, 2012 Introduction to Cryptography, Benny Pinkas page 18



Padded RSA

- In order to make textbook RSA semantically secure we
must change it to be a probabilistic encryption

— The initial message must be preprocessed before being input to
the RSA function

- For example, we can pad the message with random bits.
- Suppose that messages are of length /N/-L bits

- To encrypt a message M, choose a random string r of length L,
and compute (r [ M) mod N.

- When decrypting, output only the last /N/-L bits of C? mod N

- Any message has 2- possible encryptions. L must be long enough
so that a search of all 2-pads is inefficient.

- There is no known proof that this is secure.

- Similar schemes can be proven to be secure under certain
assumptions



- To encrypt a message

02 randompad FF msg

— The result is encrypted using the RSA function

— This system is widely deployed even though it has no
security analysis.

— This solution makes the encryption non-deterministic but
does not prevent chosen ciphertext attacks.

December 25, 2012 Introduction to Cryptography, Benny Pinkas

page 20



- To encrypt a message

02 randompad FF msg

- PKCS1 as used in SSL

— Server decrypts message. If first byte is not 02, sends an
error message.

— Attacker can test if plaintext begins with “02”
- Attack:

— Given ciphertext C, choose random r. Compute C’ = réC =
(r - PKCS1(msg))e.
- Send C’ and wait for response.

December 25, 2012 Introduction to Cryptography, Benny Pinkas page 21



PKCS1 V1.5 — Attack [Bleinchenbacher 98]

- The attacker can test if the plaintext r-PKCS1(msg) begins
with “02”. This reveals information about the message.

- To see why this works, consider a simplified setting:
— N = 2" (i.e., is a power of 2, which is impossible in RSA)
— Server returns an error message if msb=1

— Attacker sends (2-X)®.

- Answer is 1 iff msb of (2-X) mod 2" is 1. Namely, if 2"d bit of X
IS 1.

— Attacker sends (4-X)®.
- Answer is 1 39 bit of X is 1.

— Continue to find all bits of X...



- OAEP (Optimal asymmetric encryption padding)

- Encrypt X|Y using RSA

- Decryption: check pad and reject
If invalid.

Thm: If RSA is a trapdoor permutation
then RSA-OAEP provides chosen
ciphertext security when H,G are
“random oracles”.

Usually implement H,G using SHA-256.

December 25, 2012 Introduction to Cryptography, Benny Pinkas

page 23



Implemen’[a’[iOn attacks (based on slides by Dan Boneh)

- Attack the implementation of RSA
- Timing attack (Kocher 97)
— The time it takes to compute C4 mod N can expose d.

- Power attack (Kocher 99)

— The power consumption of a smartcard while it is
computing C4 mod N can expose d.

. Faults attack: (BDL 97) A computer error during C®
mod N can expose d.

— OpenSSL defense: check output. 10% slowdown.



Digital Signatures

December 25, 2012 Introduction to Cryptography, Benny Pinkas page 25



- Associate a document with an signer (individual)

- Signature can be verified against a different signature
of the individual

- It is hard to forge the signature...

- It is hard to change the document after it was signed...
- Signatures are legally binding

December 25, 2012 Introduction to Cryptography, Benny Pinkas

page 2



Desiderata for digital signatures

« Associate a document to an signer

A digital signature is attached to a document (rather
then be part of it)

- The signature is easy to verify but hard to forge
— Signing is done using knowledge of a private key

— Verification is done using a public key associated with the
signer (rather than comparing to an original signature)

— It is impossible to change even one bit in the signed
document

- A copy of a digitally signed document is as good as the
original signed document.

- Digital signatures could be legally binding...



Non Repudiation

- Prevent signer from denying that it sighed the message

- |.e., the receiver can prove to third parties that the
message was signed by the signer

- This is different than message authentication (MACs)

— There the receiver is assured that the message was sent
by the receiver and was not changed in transit

— But the receiver cannot prove this to other parties
- MACs: sender and receiver share a secret key K

- If R sees a message MACed with K, it knows that it could
have only been generated by S

- But if R shows the MAC to a third party, it cannot prove that
the MAC was generated by S and not by R



signing Private signature key

<

Document M

Public verification key

Signature of M

verification

algorithm  EEVEYT7%s

» valid / invalid

Signature

depends on M

December 25, 2012 Introduction to Cryptography, Benny Pinkas page 29



Diffie-Hellman
“New directions in cryptography” (1976)

- In public key encryption

— The encryption function is a trapdoor permutation f
- Everyone can encrypt = compute f(). (using the public key)

- Only Alice can decrypt = compute f (). (using her private key)
- Alice can use f for signing
— Alice signs m by computing s=f-"(m).
— Verification is done by computing m=f(s).

- Intuition: since only Alice can compute f -/(), forgery is
infeasible.

- Caveat: none of the established practical signature
schemes following this paradigm is provably secure



- Key generation: (as in RSA)
— Alice picks random p,q. Finds e-d=7 mod (p-1)(g-1).
— Public verification key: (N,e)
- Private signature key: d

- Signing: Given m, Alice computes s=m? mod N.

- Verification: given m,s and public key (N, e).
— Compute m’ = s® mod N.
— Output “valid” iff m’=m.

December 25, 2012 Introduction to Cryptography, Benny Pinkas

page 31



- Key generation: (as in RSA)
— Alice picks random p,q. Finds e-d=7 mod (p-1)(g-1).
— Public verification key: (N,e)
- Private signature key: d

- Signing: Given m, Alice computes s=m? mod N.

- Verification: given m,s and public key (N, e).
— Compute m’ = s® mod N.
— Output “valid” iff m’=m.

December 25, 2012 Introduction to Cryptography, Benny Pinkas

page 32



Message lengths

- A technical problem:
— |m| might be longer than |N|
— m might not be in the domain of /()

Solution “hash-and-sign” paradigm:

- Signing: First compute H(m), then compute the
signature f-'(H(M)). Where,

— The range of H() must be contained in the domain of f-7().
— H() must be collision intractable. l.e. it is hard to find (in
polynomial time) messages m, m’s.t. Him)=H(m’).
- Verification:
- Compute f(s). Compare to H(m).

- Using H() is also good for security reasons. See below.



Security of using a hash function

- Intuitively
— Adversary can compute H(), f(), but not H (), f-7().
— Can only compute (m,H(m)) by choosing m and computing H().
— Adversary wants to compute (m ,f-'(H(m))).
— To break signature needs to show s s.t. f(s)=H(m). (E.g. s°=H(m).)

— Failed attack strategy 1:
- Pick s, compute f(s), and look for m s.t. H(m)=f{(s).

— Failed attack strategy 2:

- Pick mm’s.t. H(m)=H(m’). Ask for a signature s of m’
(which is also a signature of m).

- (If H() is not collision resistant, adversary could find mym
s.t. Him) = H(m’).)

— This does not mean that the scheme is secure, only that these attacks
fail.

J



